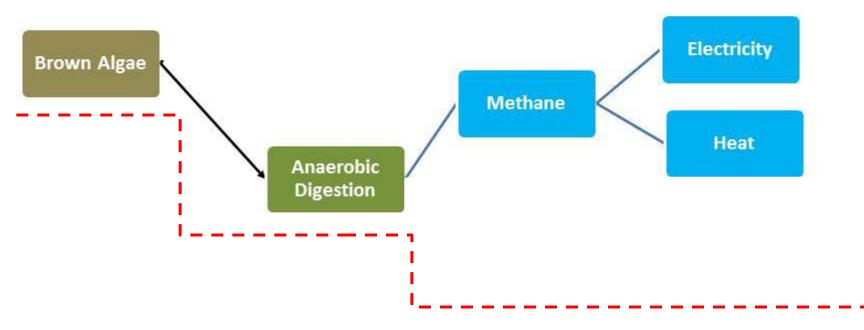

해조류 바이오연료 생산공정 설계 동향

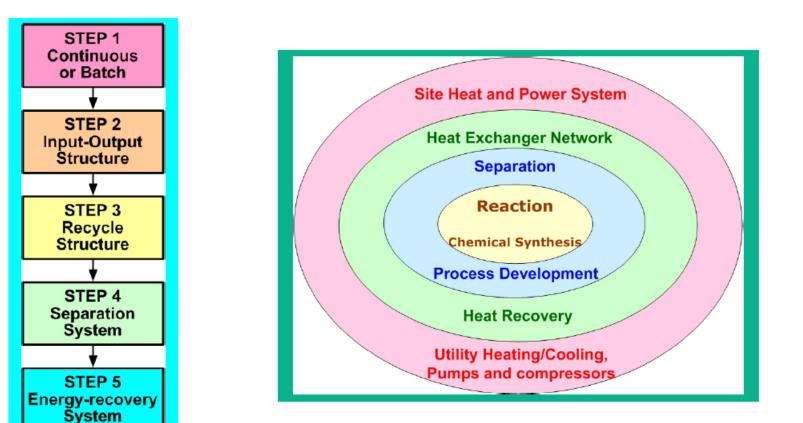
- BIOCHEMICAL CONVESION 2 -

부경대학교 화학공학과 유준



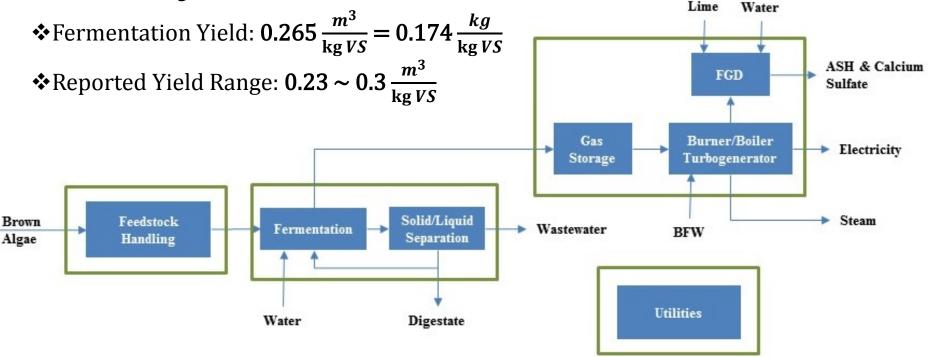
(Possible) Biorefinery network for seaweed biomass

Biochemical Conversion of Biomass


2. Methane Production

Conceptual process design

Hierarchical design

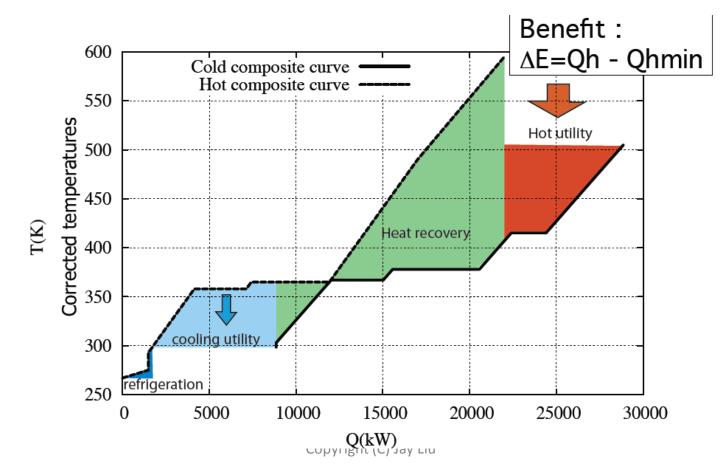

Onion model

Conceptual design of methane production

Base case

- ✤Fermentation Temperature: 35°C (10 days)
- ♦ Solid Loading: 10 wt%

Conversions


Brown algae type	CH ₄ yield (m ³ /kg VS)	Temperature (°C)	Time (days)
L. japonica	0.18	35	6~20
L. Digitata	0.14~0.17	37	21
L. japonica	0.297	55	17~28
L. japonica	0.25~0.28	35	14~46
L. japonica	0.24~0.30	35	9~30
L. Saccharina	0.205~0.220	37	25
L. saccharina	0.230	35	24
Ascophyllum nodosum	0.110	35	24
L. hyperborea	0.280	35	24
Macrocystis pyrifera (giant kelp)	0.277-0.310	38	18

Process Simulation

- ✤ A plant scale of 400,000 ton dry seaweed/year is considered.
- It was assumed that brown algal biomass contained 20% moisture at the plant gates.
- ✤ The fermentation and reactors are modeled as conversion reactors (**RSTOIC**).
- Burner/Turbogenerator, FGD, cooling tower, and chilled water processes simulated according to NREL's Aspen Plus simulation for Ethanol from corn stover (Humbird et al., 2012).

Heat exchanger network design

Heat integration analysis is performed for the process in order to minimize the utility requirements. An inventory of the heat demand and supply within the plant is made and ordered by temperature range.

Heat exchanger network design

- Cooling demands at above 40°C are met by cooling water. Cooling below 40°C is required in the fermentation reactors where chilled water (4-15 °C) is used.
- ✤ Hot and cold streams are matched under the following criteria:
 - Matches between near streams (same plant section) are preferred;
 - A minimum temperature differences of 5°C, 10°C, 20°C, and 30°C are imposed for condensation, liquid-liquid, liquid-gas, and gas-gas heat transfer matches.

Techno-economic model

- **Start-up** period **three month** and **30 years** plant life.
- **Contingency 10%** of total project cost.
- ✤ 10% internal rate of return (IRR).
- ✤ Working capital 5% of total capital expense per year.
- ✤ Tax rate 35% per year.
- ✤ Startup period
 - *** Revenues** during start-up: 50%
 - ✤ Variable costs incurred during start-up : 75%
 - ✤ Fixed costs incurred during start-up : 100%
- Depreciation method (recovery period) : 200% declining balance (7 years)
- ✤ Land: 6% of installed cost.
- Salvage value: 0 M\$
- ✤ Construction period: One year
- Operating hours per period: 8000 h/year

Techno-economic model

Fixed operating costs	
Labor cost	1.6% of total installed cost
Maintenance cost	3.0% of total installed cost
Property insurance and tax	0.7% of FCI
Variable operating cost	
Biomass	Laminaria japonica
Cost of macroalgae cultivation	54.4 \$/ton (dry basis)
Transport cost	13.6 \$/ton (dry basis)
Total macroalgae cost	68 \$/ton (dry basis)
Waste water	0.041 \$/m3
FGD Lime	203 \$/ton
Disposal of Ash	32 \$/ton
Boiler Chemicals	5092 \$/ton
Cooling Tower Chemicals	3051 \$/ton
Process water	0.27 \$/ton

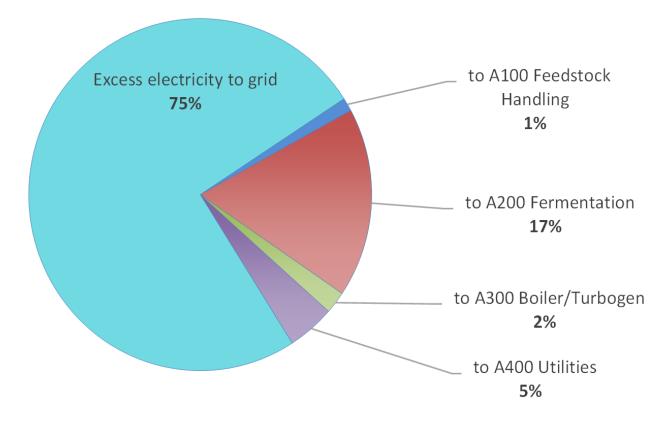
Direct costs	% of installed costs
Installed costs	100%
Warehouse	4%
Site development	9%
Additional piping	4.5%
Indirect costs	% of total direct costs (TDC)
Prorateable costs	10%
Field expenses	10%
Home office and construction	20%
Project contingency	10%
Other costs	10%

Capital costs

Using NREL's equipment cost reports quoted by vendors, the equipment costs were updated based on the 2012 dollar value, by using the chemical engineering plant cost index (CEPCI).

Item	Scaling Exp.	Year of Quote	Cost US\$	Inst. Fac.	Ref.
Digesters	0.6	2012	6,450,000	1.1	Davis et al., 2013
Flash tank	0.7	2009	511,000	2.0	Humbird et al., 2011
Boiler	0.6	2010	28,550,000	1.8	Humbird et al., 2011
Turbine/Generator	0.6	2010	9,500,000	1.8	Humbird et al., 2011
Amine Addition Pkg.	0.6	2010	40,000	1.8	Humbird et al., 2011
Deaerator	0.6	2010	305,000	3	Humbird et al., 2011
Pressure Filter	0.8	2010	3294700	1.7	Humbird et al., 2011
Cooling Tower System	0.6	2010	\$1,375,000	1.5	Humbird et al., 2011
PSA unit	0.6	2002	4,855,471	2.47	Spath et al., 2005

Sensitivity Analyses

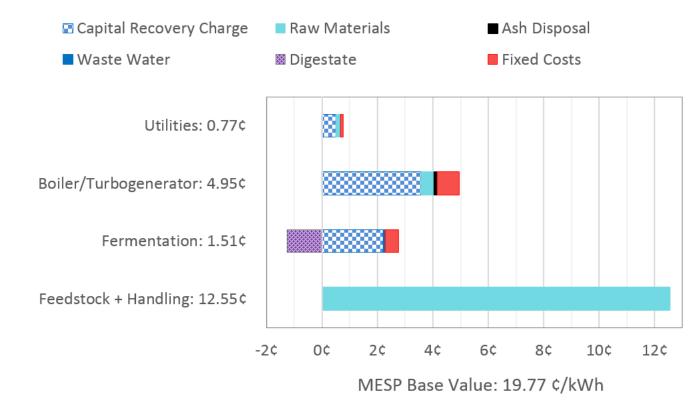

- Sensitivity analysis were performed on economic and process parameters to cover for process uncertainties and find the bottle necks of the process.
 - 1) Techno-economic model parameters (FCI, IRR, biomass price,...)
 - 2) Fermentation temperature
 - 3) Hydrogen recovery
 - 4) Solid loading
 - 5) Yield

Results: Main stream MB & EB

Stream	Mass flow (kg/hr)
Brown algae	62,500
Net electricity to the grid (kW)	28,450
Digestate	33,148
Fresh water	609,250
Waste water	489,860
Solid waste	1,030
FGD Lime	614
Boiler chemicals	0.0323
Cooling tower chemicals	1.52

Results: Energy Requirements

• Total electricity produced in the process is **35,760 kW** from which <u>25%</u> is consumed by the process and **27,100 KW** is delivered **to the grid**.


Results: TCI & manufacturing costs

	MP (Million\$)
Feedstock Handling	17.0
Fermentation	18.5
Boiler/Turbogenerator	30.0
Utilities	4.1
Total Installed Costs	52.6
Total Direct Costs (TDC)	61.1
Total Indirect Costs	36.7
Fixed Capital Investment (FCI)	97.8
Total Capital Investment (TCI)	105.9

	MP
Feedstock (mm\$/y)	27,2
Utility (mm\$/y)	0
Other Variable Cost (mm\$/y)	1.8
Fixed Operating Cost (mm\$/y)	3.0
Annual Manufacturing Cost	31.9
Digestate (mm\$/y)	2.7

Results: Minimum Electricity Selling Price (MESP)

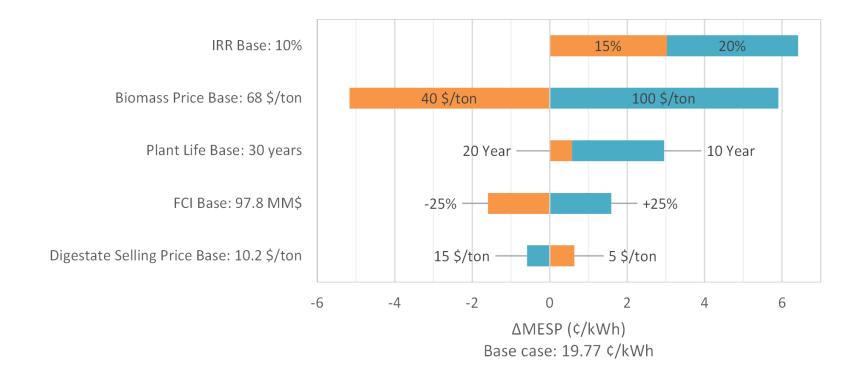
The MESP was calculated as 19.77 ¢/kWh to reach a breakeven point after 30 years of plant life.

Cost contribution details from each process area to total MESP.

Copyright (C) Jay Liu

Results: Minimum Electricity Selling Price (MESP)

Period	Residential	Commercial	Industrial	Transportation	All Sectors
2012	11.88	10.09	6.67	10.21	9.84
2013	12.13	10.26	6.89	10.55	10.07
2014	12.50	10.75	7.01	10.27	10.45

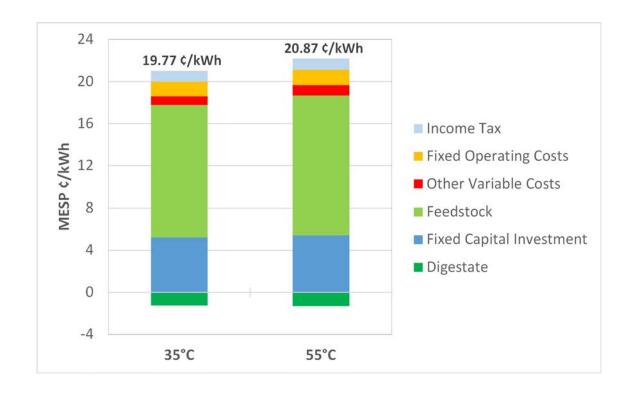

Average Price (¢/kWh) of Electricity to Ultimate Customers (http://www.eia.gov/)

Period	California	Arizona	Michigan	New York	Connecticut	Hawaii	Washington
2015	18.24	10.09	15.43	18.44	19.20	29.87	9.36

Average Price (¢/kWh) of Electricity for residential sector at 2015 (http://www.eia.gov/)

Sensitivity Analyses: Economic parameters

MESP showed the highest sensitivity to IRR and biomass price and minimum sensitivity to byproduct selling price.

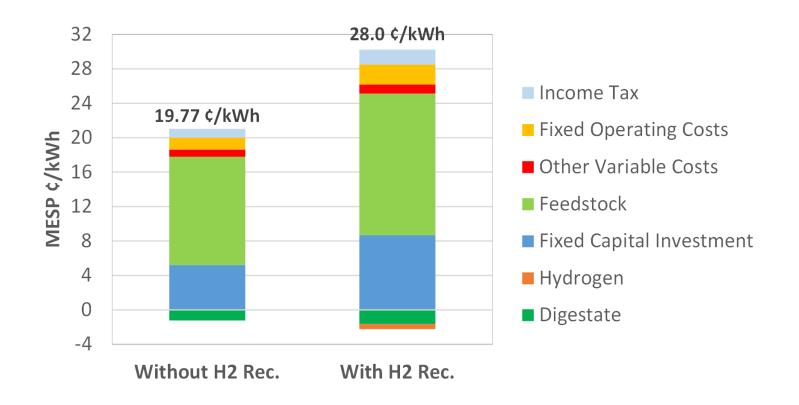


Results of sensitivity analysis on economic parameters.

Copyright (C) Jay Liu

Sensitivity Analyses: Fermentation temperature

- ➤ The capital cost and net electricity to grid:
 105.9 MM\$/year & 27,100 kW (35°C) → 102.9 MM\$/year & 25,700 kW (55°C)
- ➢ MESP: 19.77 ¢/kWh (35°C) → 20.87 ¢/kWh (55°C)

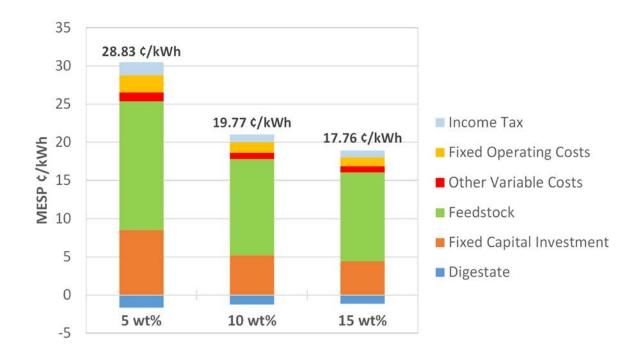

Sensitivity Analyses: Hydrogen Recovery

- Adding a PSA assuming hydrogen selling price of **1.5** \$/kg (NETL, 2009).
- The vapors from the fermenters are compressed in a two-stage isentropic compressor to 25 atm with an interstage cooling to 60°C. The compressed gases are further cooled to 40°C by cooling water and entrained liquids are removed in a knock out drum.
- For a 70 mol% hydrogen feed to PSA, a hydrogen recovery rate of 85% with a product purity of 99.9 vol% is possible (Spath et al.,2005).

	No H2 Recovery	With H2 Recovery
TCI (mm\$)	105.9	134.6
Electricity to grid (KW)	27,100	20,686
Hydrogen selling (\$/year)	0	998,400

Sensitivity Analyses: Hydrogen Recovery

>As a result, the MESP was changed from its base value of 19.77 to 20.87 ¢/kWh .

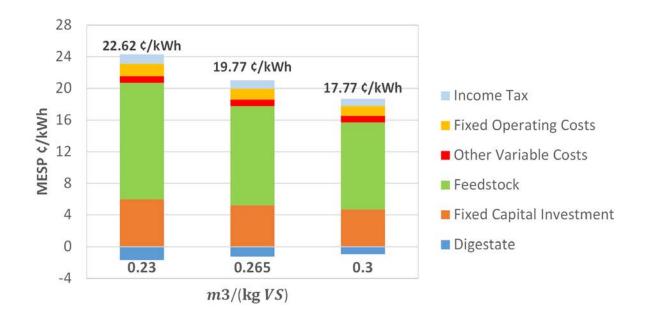

Sensitivity Analyses: Solid Loading

- The impact of solid loading was assessed by changing it from base value of 10 wt% to 5 and 15 wt%.
- At lower solid loadings, the process power consumption increases because of power requirements for agitation and cooling demands.

	5 wt%	10 wt%	15 wt%
TCI (mm\$)	129.4	105.9	97.7
Electricity to grid (KW)	20,200	27,100	29,341

Sensitivity Analyses: Solid Loading

➤The MESP was changed from its base value of 19.77 to 28.83 and 17.76 ¢/kWh for 5 and 15 wt% solids loading, respectively.


Sensitivity Analyses: Methane Yield

- The impact of methane yield was assessed by changing it from base value of 0.265 $\frac{m^3}{\log VS}$ to 0.23 and 0.3 $\frac{m^3}{\log VS}$.
- The MESP was changed from its base value of 19.77 to 22.62 and 17.77 ¢/kWh for 0.23 and 0.3 $\frac{m^3}{\log VS}$ methane yield, respectively.

	$0.23 \frac{m^3}{\log VS}$	$0.265 \frac{m^3}{\ker VS}$	$0.3 \frac{m^3}{\log VS}$
TCI (mm\$)	103.2	105.9	107.9
Electricity to grid (KW)	23,100	27,100	30,800
Digestate (mm\$/yr)	3.1	2.7	2.3

Sensitivity Analyses: Methane Yield

- The impact of methane yield was assessed by changing it from base value of 0.265 $\frac{m^3}{\log VS}$ to 0.23 and 0.3 $\frac{m^3}{\log VS}$.
- The MESP was changed from its base value of 19.77 to 22.62 and 17.77 ¢/kWh for 0.23 and 0.3 $\frac{m^3}{\log VS}$ methane yield, respectively.

Conclusions

- ✤ Brown algae: viable biomass resources for electricity production.
- The calculated MESP for the process is comparable with current electricity selling price for residential sector.
- Solid loading, IRR, and biomass price have the highest impact on MESP.
- ✤ Hydrogen recovery does not improve the process economics.