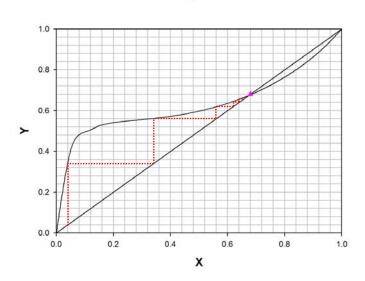
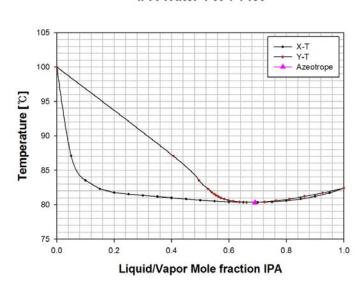

IPA 추출증류공정의 최적화


공주대학교 화학공학부 <u>조 정 호</u>

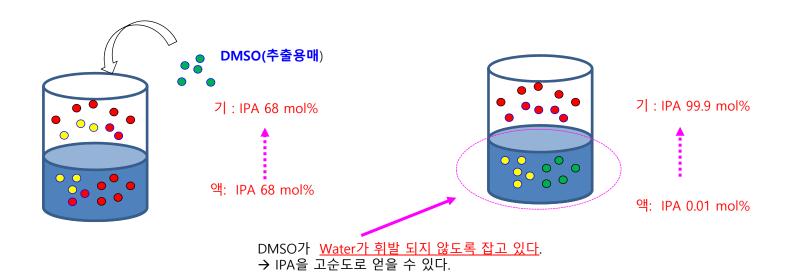
Introduction



Azeotrope

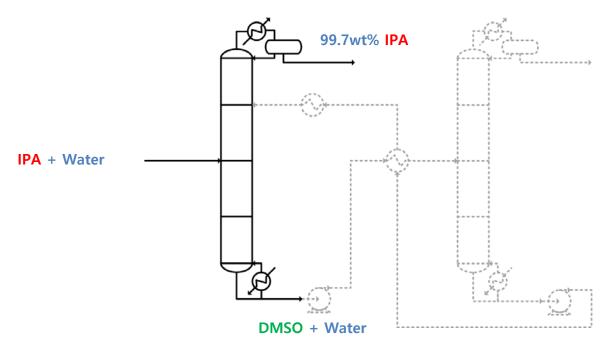
P=1atm, T-Y Plot

IPA-Water T-X-Y Plot


- [1] 공비 상태 : 특별한 성분비의 액체는 순수액체와 같이 일정한 온도에서 성분비가 변하지 않고 끓음 -> 용액과 증기의 성분비 같아짐
- [2] IPA-Water는 P=1atm에서 68 mol%의 공비조성을 형성, 공비온도 82 ℃
- [3] 공비혼합물은 "일반적인 증류법"을 이용하여 "공비점 이상의 조성"을 얻을 수 없다.

The Principle of Extractive Distillation

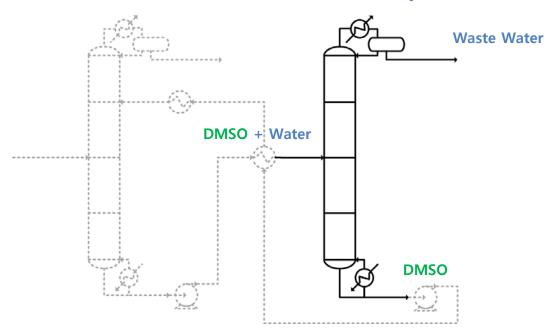
추출증류법


공비점을 갖는(상대휘발도가 동일한) 액체 혼합물에 추출용매를 첨가하여 상대 휘발도를 변경시켜서 각각의 성분을 분리시키는 방법

예를 들면 공비점을 갖는 IPA 와 water 혼합물에 water와 친화력이 강하고 휘발도가 매우 낮은 DMSO(추출용매)를 첨가하면, DMSO성분은 water의 휘발도를 낮추게 된다. 이렇게 되면 IPA 와 water 성분간에 희발도 차이가 생기면서 각 성분을 고순도로 분리할 수 있다.

Simulation: Extractive Distillation Column

Extractive Distillation Column

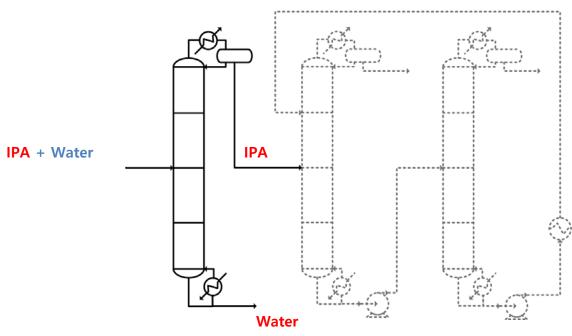


추출 증류탑:

- ① IPA 폐수용액과 추출용매(DMSO)는 추출 증류탑으로 유입됩니다.
- ② 추출 증류탑에서는 증류를 통해 상부로는 99.7wt% 고순도의 IPA의 제품을 얻습니다.
- ③ 그리고 하부로는 추출용매와 폐수용액에 혼합되어 있는 수분이 나가게 됩니다.

Simulation: Solvent Recovery Column

Solvent Recovery Column



용매 회수탑:

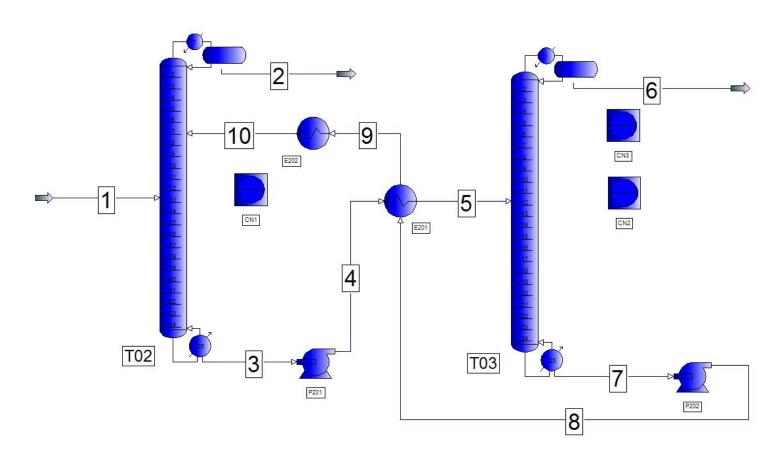
- ① 추출증류탑 하부로 배출되는 추출용매와 수분은 용매 회수탑 원료로 유입됩니다.
- ② 용매 회수탑에서는 하부를 통해 추출용매를 고순도로 정제하고 상부로는 수분을 배출되게 됩니다.
- ③ 용매 회수탑에서 고순도로 정제된 추출용매는 다시 추출 증류탑으로 유입됩니다.

Simulation: Concentrator

Concentrator Column

농축기:

- ① 2기 배열의 증류탑과 다른 점은, IPA 폐수용액이 추출 증류탑 원료로 유입되기 전에 농축기에서 수분을 상당량 제거한다는 것입니다.
- ② 이렇게 되면 농축기에서 제거된 수분의 양만큼 용매 회수탑 증류시켜야 할 에너지를 줄일수 있습니다.
- ③ 농축기를 제외한 추출 증류탑과 용매 회수탑의 원리는 2기 배열과 동일합니다.

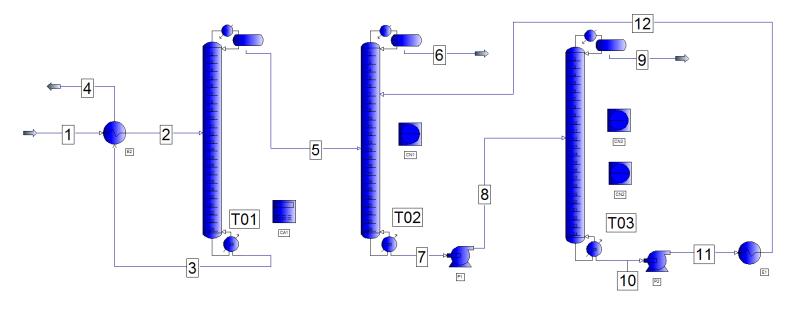

Feedstock & Product Specifications:

Feedstock Conditions

Stream Name	Feed
Temperature (°C)	50
Pressure (kPa)	250
Total Molar Rate (kmol/hr)	99.83
Total Mass Rate (kg/hr)	3,000.00
Component	Composition [wt%]
IPA .	57.2
WATER	42.8

Product Specifications

Product Specifications	Value
IPA Purity	> 99.70 wt%
IPA Yield	> 99%
Solvent Content in IPA Product	< 1ppm by weight
IPA Content in Waste Water	< 500 ppm by weight


Extractive Distillation Column

Solvent Recovery Column

Stream Number	1	2	6	7
Stream Name	T02 Feed	T02 Top (IPA Product)	T03 Top (Waste Water)	T03 Bottom (Solvent)
Temperature (°C)	20.00	45.00	55.25	160.00
Pressure (kPa)	250.00	103.00	16.00	42.95
Vapor Mole Fraction	0.00	0.00	0.00	0.00
Total Molar Rate kmol/hr	99.83	28.83	71.00	56.29
Total Mass Rate kg/hr	3,000.00	1,720.52	1,279.48	4,396.94
Comp. Flow Rate (kg/hr)	kg/hr	kg/hr	kg/hr	kg/hr
IPA	1,716.00	1,715.36	0.64	0.00
WATER	1,284.00	5.16	1,278.84	0.44
DMSO	0,00	0.00	0.00	4,396.50
Comp. Composition (wt%)	wt%	wt%	wt%	wt%
IPA	57.20	99.70	0.05	0.00
WATER	42.80	0.30	99.95	0.01
DMSO	0.00	0.00	0.00	99.99

IPA 회수율 99.96%, IPA 순도 99.7wt%

waste water중에 포함되어 있는 IPA의 함량: 500 ppm

Concentrator Column

Extractive Distillation Column

Solvent Recovery Column

Stream Number	2	5	6	9	10
Stream Name	T01 Feed	Т01 Тор	T02 Top (IPA Product)	T03 Top (Waste Water)	T03 Bottom (Solvent)
Temperature (°C)	66.20	45.00	45.00	45.00	160.00
Pressure (kPa)	250.00	105.00	103.00	26.94	42.94
Vapor Mole Fraction	0.00	0.00	0.00	0.00	0.00
Total Molar Rate kmol/hr	99.83	46.15	28.83	17.32	38.44
Total Mass Rate kg/hr	3,000.00	2,032.60	1,720.52	312.08	3,002.59
Comp. Flow Rate (kg/hr)	kg/hr	kg/hr	kg/hr	kg/hr	kg/hr
IPA	1,716.00	1,715.52	1,715.36	0.16	0.00
WATER	1,284.00	317.09	1 5.16	311.92	0.30
DMSO	0.00	0.00	0.00	0.00	3,002.29
Comp. Composition (wt%)	wt%	wt%	wt%	wt%	wt%
IPA	57.20	84.40	99.70	0.05	0.00
WATER	42.80	15,60	10.30	99 <mark>1</mark> 95	0.01
DMSO	0.00	0.00	0.00	0.00	99.99

waste water중에 IPA 회수율 99.96% IPA 순도 99.7wt% IPA의 함량: 500 ppm

Comparison between 2-columns & 2-columns Configurations:

Items	Two-columns	Three-columns	
Condenser duty at T01	-	0.6470x10 ⁶ kcal/hr	
Condenser duty of T02	0.9654x10 ⁶ kcal/hr	0.9655x10 ⁶ kcal/hr	
Condenser duty of T03	2.1851x10 ⁶ kcal/hr	0.5362x10 ⁶ kcal/hr	
Total	3.1505x10 ⁶ kcal/hr	2.1487x10 ⁶ kcal/hr	
Reboiler duty of T01	-	0.6562x10 ⁶ kcal/hr	
Reboiler duty of T02	1.3302x10 ⁶ kcal/hr	1.1668x10 ⁶ kcal/hr	
Reboiler duty of T03	2.0853x10 ⁶ kcal/hr	0.4887x10 ⁶ kcal/hr	
Total	3.4155x10 ⁶ kcal/hr	2.3117x10 ⁶ kcal/hr	
Solvent circulation rate	4,396 Kg/hr	2,997 Kg/hr	
Cooling water consumption	394 Ton/hr	269 Ton/hr	
Steam consumption	6,976 Kg/hr	4,721 Kg/hr	

Conclusion:

- 본 연구에서는 공비점을 가지는 IPA-water 공비 혼합물을 추출용매 DMSO를 이용하여 순도 99.7 wt% 이상의 IPA를 얻는 추출증류 공정에 대한 연구를 진행하였다. 전산모사에 사용 된 열역학 모델식은 NRTL 액체 활동도 계수 모델식을 사용하였다.
- IPA 52.4 wt%, Water 47.6 wt%의 조성을 가진 3,000 kg/hr의 원료를 가지고, 2기 증류탑 배열 공정과 3기 증류탑 배열 공정을 비교하였다.
- 2기 추출증류 배열공정에서는 추출증류탑 탑하부로는 수분과 추출용매 그리고 미량의 IPA이 포함된 혼합물이 배출된다. 이러한 혼합물은 용매 회수탑으로 보내지고 탑 하부로 회수하여 다시 추출증류탑의 추출용매로 재사용되도록 한다.
- 3기의 추출증류 배열의 경우는 추출증류탑 전단에 농축기를 사용하여 IPA폐수용액을 공비점 직전까지 농축한다. 이렇게 농축기를 사용하게 되면 농축기를 통해 제거된 수분의 양만큼 공정의 운전비용이 감소되게 된다.
- IPA 99.7wt% 정제를 위해 필요한 추출용매로써 DMSO를 사용하며 3기 배열을 사용한 경우가 2기 배열을 사용한 경우에 비해 용매 순환유량은 31.8% 감소, 총 스팀 소모량은 32.3% 감소한다.
- 추출증류공정을 이용하여 IPA에 대한 정제할 때 3기 배열로 운전하고 추출용매로는 DMSO를 사용한 경우에 장치 투자비나 에너지 사용량 측면에서 더 유리할 것으로 판단된다.

14

THANK YOU