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Figure 1. Conversion with temperature over various cataly sts
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Figure 2. Lower olefins selectivity with temperature over various catalysts
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Table 1. Molar ratio of reaction mixtures and reaction conditions

Catalysts Molar ratio Temp. Time
ZSM-5 0.2TPABr-0.1Na;0-Si0:-0.0143A1,05-40H,O 170C  72hr
Fe-silicate  0.2TPABr-0.1Na;0-58i0,-0.0143Fe;03-40H,0 170C  72hr
Ga-silicate  0.2TPABr-0.1Na;0-S8i0,-0.0143Ga,03 40HO 170C  72hr
Zn-silicate  0.2TPABr-0.1Na;0-$10,-0.0286Zn0-40H,0 170C  72hr
SAPO-5 2.0TEA-0.5Si0,-Al;04-0.9P,05-60H,0 200C 72hr
SAPO-18 2.0DIEPA-1.0A1;05-0.65i0;-0.9P,05-50H,0 170C  72hr
SAPO-34 2.0MOR-1.0A1,03-0.6Si0,-P,0s-60HO 185C 48hr
SAPO-44 1.0CHA-1.0A1,05-0.68i0,-P.05-50H,0 200C  72hr
* TPABr : Tetrapropylammonium bromide
TEA  : Triethylamine
DIEPA : Diisopropylethylamine
MOR : Morpholine
CHA : Cyclohexylamine
Table 2. Product distribution of methanol conversion over various catalysts
Catalysts HZSM-5 SAPO-5 SAPO-18 SAPO-34 SAPO-44
MeOH conv.(%) 60.65 40.42 99.27 100 100
Selectivity(wt. %)
C 0.2 04 0.3 0.3 0.5
Cy 6.1 11 18.6 305 30.3
C; - - - 0.6 0.6
Cs 8.7 14.6 46.1 38.3 42.5
Cs 5.7 12.8 - 10.6 9.0
Cs 59 11.3 24.0 133 12.7
Ca 1.6 2.7 - 1.7 1.5
Cs’ 15.6 30 10.7 4.6 2.8
Aromatics 56 17 04 - -
C+C3+Cy” 20.7 36.9 88.7 82.1 85.5

Reaction temp.: 340°C, latm
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During the synthesis of the MCM-41 materials, NaOH neutralization with acetic acid
was repeated three times. After filtering, washing with doubly distilled water and
drying at 370 K, the product was calcined in O; flow around 800 K.

For the investigation of hydrothermal stabilities of MCM-41 materials, about 0.1 g
of the calcined samples was slurried in doubly distilled water for 12 h at 343 K.
Then, the sample was filtered, washed with doubly distilled water and dried in a
vacuum oven at room temperature. The effects of pH and Na’ ion concentration on
the structure of the good quality AIMCM-41 were investigated by slurring in aqueous
solution (HCl, NaOH and NaNOs;) at room temperature. The samples were
characterized with XRD, BET specific surface area and Si MAS NMR. The XRD
pattern was obtained with a Cu K, X-ray source using a Rigaku DMAX-TI (3 kW)
instrument. The **Si MAS NMR spectra were obtained at 206 K with a Bruker AM
300 instrument operating at 59.6 MHz. Relaxation delay for the ®Si NMR was
given as 5 s and sample spinning rate was 3.5 kHz. BET area measurement was
carried out with N, adsorption using a conventional volumetric gas adsorption
apparatus.

Ion exchange of the AIMCM-41 was cartied out with aqueous solutions of NaNOs,
KNOs;, Ca(NOs); - 4H,0 and Y(NOs)s - SH2O. The results of elemental analysis of
the ion exchanged AIMCM-41 samples using inductively coupled plasma (ICP)
emission spectroscopy was displayed in Table 1. '®Xe NMR spectra of the ion
exchanged samples were obtained at 296 K with xenon gas at 53.3 kPa using a
Bruker AM 300 instrument operating at 83.0 MHz with a 0.5 s relaxation delay.
The heat of adsorption of xenon on the ion exchanged AIMCM-41 has been
measured at 296 K using the Clausius-Clapeyron equation, for the xenon adsorption
isotherms obtained precisely at 293, 296 and 299 K, respectively.

Table 1. Ion exchange and BET specific areas of MCM-41 materials.

Sample Ton Ton/Al* Sger/m’g’
Na -
ure-silica K --
t;/ICM—41 Ca - 921
Y -
Na 0.41 1016
AIMCM-41 K 0.36 984
(Si/Al = 39) Ca 0.37 982
Y 0.39 995

a: jon exchange capacity of the pure-silica MCM-41 is less than 1% compared with
same mass of AIMCM-41.

Results and Discussion

Figure 1 shows the XRD patterns of MCM-41 materials after slurring in doubly



