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Development of a Numerical Scheme
for Axisymmetric Unsteady Free-Boundary Problem
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Introduction
There have been remarkable progresses in development of numerical schemes
for fluid flow anaylsis during the last several decades. However, one of
the relatively underdeveloped areas is the unsteady free boundary problem
in 2-dimensions. The numerical schemes for the free boundary problem
analysis are mostly based on the finite element method (FEM). Although
FEM is applicable to wide range of problems, it is known to require heavy
computation time. Thus we propose an alternative scheme based on the
finite difference method (FDM) on the numerically generated orthogonal
coordinate system. In view of time differencing, the proposed scheme is
explicit.

As a sample problem, the problem of pulsatile flows in an elastic blood
vessel is considered. Time-periodic change of inlet velocity and pressure
produces unsteadiness of the blood vessel wall as well as the blood flow.
Thus a moving coordinate system is required, in other words the coordinate
system depends on time. In the present work, an orthogonal coordinate
system is generated for each time by the scheme of Oh and Kang{1]. Using
the developed scheme, the pressure wave propagation phenomena in artery
are studied.

Problem Description

1.Governing Equations in Orthogonal Coordinate System
Governing equations for blood flow are assumed to be given by the Navier-
Stokes equation and the continuity equation. In this work, the stream
function-vorticity formulation is adopted. The dimensionless governing equa-
tions for vorticity and stream function in an orthogonal coordinate system
such as one in Figure 1 are given by [2]
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Figure 1: Moving coordinate system for an elastic tube with wave propaga-
tion
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and the stream function is defined by

where
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In (1), the Strouhal number, St = Ql./uc, is the ratio of unsteady accelera-
tion to the steady acceleration and is the measure of the unsteadiness of the
flow. The Reynolds number, Re = ucle/v, is the ratio of the inertial force
to the viscous force.

The shape of the physical domain is time-dependent as a result of defor-
mation of the boundary, and the point in the physical domain corresponding
to the fixed point (£,n) in the computational domain is also time-dependent.
Transformation from the partial time derivatives at fixed points in the phys-
ical domain to the partial time derivatives in the (§,7) system must be done
properly. Generally the relationship between the two time derivatives for an
arbitrary dependent variable w is given by

(%), = (5)e- (5= ®

2. Boundary Conditions
In this problem, we assume that velocity and pressure are specified at inlet.
As the inlet velocity condition, we use the transient uni-directional flow of
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time-dependent motion produced in a circular tube by a periodic, time-
dependent pressure gradient
Op

5 G = Gg(1 + €sin(2t)) .

The flow field has time-independent part and time-dependent part and con-
tains the Bessel functions of zero order. Nondimensionalized solution for

Uy = ug)) + euggl)is given as
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The osciallatory Reynolds number, or the pulsatile Reynolds number, Rg =
QR% /v, represents the product of the Strouhal number and the Reynolds
number. For simplicity, we use the same velocity distribution for the outlet
condition as the inlet boundary condition. At tube wall, the condition for
the stream function is derived from the kinematic condition.

3. Pressure Distribution and Tube Radius
From the solutions of vorticity and stream funcion, we can obtain the pres-
sure distribution along the tube wall by using the relation
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which is derived from the Navier-Stokes equation.
The relationship between the pressure distribution and the artery radius
has been determined in experimental way[3]. The shape of tube wall is
obtained by the relation

p(z,t) — P(R) = 0. (7)

Here, P(R), which is determined experimentally, is the known function of
the variation of R with pressure.

Numerical Strategy
The global numerical scheme is shown schematically in Figure 2. Starting
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from the grid system and the flow field solution at the n-th time step, the
vorticity and the stream function for the (n + 1)-st time step are obtained
by solving (1) and (2) on the n-th time step grid system. The pressure
distribution along the tube wall for the (n + 1)-st time step is obtained
by using (6) to predict the wall shape by (7). Then, the (n + 1)-st time
step grid system is generated. Since the coordinate system is changed, the
variable correction according to (4) is required to obtain the values for the
fixed points in the computational domain.
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Figure 2: Flow diagram of numerical scheme
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