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Introduction

A variety of researches have studied the protein precipitation behavior by using various experimental techniques. These experimental results show the dependence on the factors, such as an ionic strength, a temperature, a salt concentration and solution pH. Several theoretical studies have been developed to predict the phase separation behavior of the protein solution. In these studies, most dependencies on the factors are discussed, however, the pH dependence yet has not been sufficiently studied. In this study, we present a molecular-thermodynamic frame work to describe the protein precipitation by inorganic salt. This equilibrium model represents the solution as a pseudo-one-component system containing only a continuous solvent and a globular protein molecule. Equation of state is the sum of a hard-sphere reference contribution and a perturbation. The reference term is derived based on the modified Chiew's model to describe the pre-aggregating effect of protein, which can express the conformation change in pH. We also discuss protein-protein effective two-body potentials. The distribution and magnitude of charge on the surface of a protein charges significantly with pH. It changes the magnitudes of charge-charge repulsion, charge-dipole attraction, dipole-dipole attraction, and induced-dipole-induced-dipole attraction forces between protein pairs in solution. 

Model Development

Potential of mean force

Protein interaction can be described quantitatively by a two-body potential of mean force. The overall potential between two different protein molecules;
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where r is center to center distance,
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is the specific interaction potential. This potential is the sum of five potentials, such as charge-charge, charge-dipole, charge-induced-dipole, dipole-dipole and dipole-induced-dipole potential.
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where 
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is the valance of the protein, e is the unit of electron charge, 
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is the hard-sphere diameter of protein, 
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is the dielectric permittivity of free space, 
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is the relative dielectric permittivity of water, 
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is the effective-space hydration/stern layer and 
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is the Debye parameter; given by 
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where 
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 is the dipole moment, 
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e

 is the effective dielectric constant at the surface of the protein.
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where 
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 represent the polaizability.


[image: image21.wmf](

)

4

r

0

s

2

2

2

4

6

2

r

0

4

_

)

4

)

2

/

d

1

(

)

2

/

d

(

d

2

)]

d

r

(

2

exp[

]

)

r

(

r

2

2

[

3

kTr

4

kT

3

2

kT

)

r

(

W

ú

û

ù

ê

ë

é

e

pe

e

k

+

+

k

+

k

+

-

k

-

k

+

k

+

e

pe

m

-

=

m

m



[image: image22.wmf](

)

6

2

r

0

2

i

_

kTr

4

2

kT

)

r

(

W

e

pe

a

m

-

=

m

m


       
[image: image23.wmf]ú

ú

û

ù

ê

ê

ë

é

÷

÷

ø

ö

ç

ç

è

æ

-

+

-

+

-

=

2

2

2

2

2

2

2

disp

r

d

1

ln

2

d

r

d

r

d

6

H

)

r

(

W

  for 
[image: image24.wmf](

)

r

2

d

r

D

+

³

        
where H is the Hamaker constant.
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where 
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are model parameters.

Equation of state

Perturbation theory is a method, based on statistical mechanics, for predicting thermodynamic properties of the system. In perturbation theory, an assembly of hard spheres is used as the reference system, while the remaining interactions are treated as perturbations;
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where 
[image: image34.wmf]r

 is the density of protein molecules, P is the pressure, 
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 is the average degree of pre-aggregation, and U is the perturbation energy per unit density, given by,
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<Hard-Sphere Reference Equations>

For the fluid phase, the reference binary hard-sphere equation of state are given by;
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where the packing fraction 
[image: image39.wmf]6

/

d

4

3

pr

=

h

.

The Hemholtz energy is derived using follow equation.
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The chemical potential is
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At equilibrium, pressure and composition are calculated from 
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where superscripts s and d denote the supernatant and dense phases.

Result and Conclusion

We proposed an improved thermodynamic model to describe the phase behavior of protein solution based on the statistical mechanical perturbation theory. In the proposed model, pH and an ionic strength affect intermolecular potentials considerably. It predicts successfully the phase behaviors of protein solution with various pH. In the high salt concentration, pH dependence of the protein-protein interaction potential is not effective. In this case, the pH dependence is mainly affected by the conformation change, which can be expressed by 
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FIGURE 2 Effect of salt concentration and degree of pre-aggregation : pH=7, H/kT=8.9,  (/kT=2, (=0.3nm, ds=0.694nm, d=3.44nm, Csalt=5M
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FIGURE 1 Contribution to the total potential of mean force as a function of � EMBED Equation.3  ���, in the case of pH=1 (a), and pH=10 (b) :� EMBED Equation.3  ���=7, � EMBED Equation.3  ���=2, � EMBED Equation.3  ���=3Å, � EMBED Equation.3  ���=6.94Å, pH=4, � EMBED Equation.3  ���=34.3Å, I=0.001M
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