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1. INTRODUCTION
PID controllers have been used widely in industry due to their simplicity and robustness to uncertainties. They usually have three tuning parameters of the proportional gain, integral time constant and derivative time constant. The topic in this paper is how to determine the adjustable tuning parameters to achieve the best control performance. Numerous PID tuning methods have been proposed since the ZN tuning rule. And they have contributed much to improve control performances of PID controllers. Nevertheless, much room is still remained to enhance the PID tuning strategy: 1. Frequently, set points or disturbances are not step signals in real plants. In this case, previous tuning approaches do not give the optimal solution since they have been usually developed to solve only step set point tracking or step disturbance rejection problems. 2. Sometimes, the sampling time cannot be reduced enough to guarantee continuous-time systems due to various reasons like limitations of measurement equipments, heavy computation load etc. Previous tuning methods cannot treat the discrete-time PID controller systematically since they were designed mainly for continuous-time PID controllers. 3. Tuning methods like the ITAE-1, ITAE-2, IMC etc. cannot be applied directly to more general processes since they were proposed for the first/second order plus time delay model. 4. Almost all previous methods do not guarantee the optimal solution. 5. Industrial PID controllers have various forms. For examples, anti-derivative-kick PID controllers have been used in industry and a lowpass filter is placed after the ideal PID controller. Previous tuning methods cannot treat systematically the structural differences between industrial PID controllers and the ideal PID controller. To solve above-mentioned problems, we propose a new PID controller tuning strategy that uses the Newton optimization method with exact derivative formula. It can systematically incorporate various processes, various industrial PID controllers as well as various disturbance/set point shapes with securing optimal control performances in terms of the criterion of the time-weighted integral of the square error. 

2. PROPOSED PID TUNING METHOD

2.1 Process Model

In this research, the following SISO (single-input-single-output) process model will be considered.
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where 
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Remarks:

The process treated in this research is the most general form among processes considered by previous tuning methods. We can consider any types of disturbances by assigning 
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 to tune PID controllers. For example, if we choose 
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 the process has a step input disturbance. Furthermore, the process can be self-regulating as well as integrating, unstable or nonminimum phase ones by choosing 
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2.2 Types of PID Controllers

When we apply the proposed tuning method, there are no restrictions to types of PID controllers. On the other hand, previous approaches have been developed mainly for the ideal PID controller and apply the tuning results directly to other types of PID controllers without considering the structural mismatches. Then there is loss of performance between the tuning step and the practical implementation. In this research, we consider several popular PID controllers of anti-derivative-kick PID controllers, ideal discrete-time PID controllers, anti-derivative-kick discrete-time PID controllers, PID controllers with lowpass filter and the following ideal PID controller:
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Where 
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 are the proportional gain, integral time constant and derivative time constant, respectively.

Remark: 

Previous PID controller tuning methods have been usually developed to tune the ideal PID controller so we cannot guarantee satisfactory control performances when we apply them to other types of PID controllers. The proposed method can manipulate these other types of PID controllers in an optimal manner.

2.3 Cost Function The objective of the proposed tuning method is to estimate the tuning parameters of the PID controller minimizing the following time-weighted cost function.
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where, 
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 represent the proportional gain, integral time constant, derivative time constant and the sampling time. 
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 are the desired trajectory (which can be the set point or pre-specified trajectory by the user) and the model output. 
[image: image29.wmf])

(

t

w

 is a time-weighting function. In this research, we choose the time-weight of 
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 is a positive real value. If we want to shorten the rising time while allowing the larger overshoot for a step set point change, a small 
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 should be chosen and vice versa. To solve the optimization problem, we use the following Newton optimization method because its convergence rate is very fast and we can calculate the first as well as the second derivatives of the cost function with acceptable accuracy from exact formulas (which will be derived later).


[image: image33.wmf]ú

û

ù

ê

ë

é

¶

-

¶

ú

û

ù

ê

ë

é

¶

-

¶

-

-

=

-

q

q

q

q

q

q

))

1

(

(

))

1

(

(

)

1

(

)

(

1

2

2

j

V

j

V

j

j

 (9),


[image: image34.wmf]T

d

i

p

k

k

k

]

[

=

q


(10)

Where 
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 denotes the iteration number. We repeat (9) until the tuning parameters converge. The derivatives of the cost function with respect to the adjustable parameters can be derived as follows: From (8), we derive (11)-(14).
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In the Newton optimization, it is important to calculate accurately the first and the second derivative of the model output in (11) and (13). This requirement can be satisfied by solving exact formulas consist of differential equations as derived in the next section.

2.4 Derivative Calculation

We can use the following differential equations to calculate the derivative values of the model output: 
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(15) and (16) are derived directly from (1) and (2) because 
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Where 
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 is also one of the tuning parameters, 
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, we can calculate the derivatives of the model output in (11) and (13) by solving (15)-(18) using ordinary differential equation solvers like the Ruge-Kutta method. Initial values of 
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. The derivatives of the control output can be derived easily for each PID type. For example, we obtain the followings for ideal PID controllers of (7),
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Now, we can calculate the derivatives of the cost function with respect to the tuning parameters with the above-derived equations. As an example, assume we use the ideal PID controller. First, we can set initial tuning parameters for the Newton optimization using previous PID tuning methods. Then, we would calculate the derivatives of the control output by solving (19)-(24) and the derivatives of the model output of (15)-(18) simultaneously and next, the derivatives of the cost function for every sampling time. Repeat the procedure until the time of 
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. We can apply the same procedure for other types of PID controllers to obtain the optimal parameters. Note the derived derivative formulas are exact and the related ordinary differential equations can be solved efficiently using various ODE solvers. So we can guarantee acceptable accuracy in calculating the first and second derivative of the cost function.

3. SIMULATION STUDY

Through simulation works for various situations (various set point/disturbance types, various types of processes including open-loop stable and unstable ones, various PID types), we confirmed the usefulness of the proposed tuning strategy for these various situations compared with previous approaches.

4. CONCLUSIONS

We proposed a new optimal tuning strategy for PID controllers to incorporate various situations in industry. The computation load is tolerable since the proposed method uses the Newton optimization strategy with exact derivative formulas. The proposed tuning method is much more versatile than previous tuning methods. It can secure the optimal solution for the criterion of the time-weighted integral of the square error. Also, various processes and various PID controllers can be incorporated. Furthermore, it can manipulate various set point changes/disturbances in an optimal manner. 
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