산소부하를 위한 폴리이미드-금속염 복합 막의 제조

<u>이광성</u>, 이우태 전남대학교 화학공학부

Preparation of polyimide-metal salt complex membranes for oxygen enrichment

<u>Kwang Sung Lee</u>, Woo Tai Lee Dept. of Chem. Eng. Chonnam National University

서론

막을 이용한 기체분리 및 농축은 비교적 조작이 단순하고 에너지 절약형이기 때문에 많은 연구자들에 의해 주목을 받아왔다.[1] 막분리는 다공질, 비다공질의 유기 또는 무기 막을 통한 각 성분의 투과속도차를 이용하여 혼합물로부터 특정 물질을 분리하는 기술이다.[2] 특히 기체의 막분리는 저온증류, 흡착보다 유용하여 중요한 단위 조작 기술로 부각되고 있다. 이러한 분리를 위한 고분자막들은 높은 기체 투과성과 투과선택성을 가져야하고 복잡하고 가혹한 환경에서도 그들 원래의 기체 분리 물성을 유지해야 한다.[3] polyimide막은 유리상 고분자로써 기계적 강도와 고온에 대한 내열성(108~155℃)이 우수하고 화학적으로 안정하여, 막 형성이 좋고 높은 선택성을 가짐으로써 기체 분리막으로 많이 이용되어지고 있다.[4-6] 특히, polyimide막은 높은 투과도를 갖는 것이 큰 특징이다.[7]

본 연구에서는 습식상전환법에 의해 polyimide막을 제조하였다. polyimide는 실험실에서 합성한 6FDA-p-TeMPD를 용매는 tetrahydrofuran(THF)을 사용하였고, metal salt는 CoCl₂·6H₂O, CuCl₂·2H₂O를 응고매체로는 H₂O를 사용하였다.

polyimide/solvent/metal salt로 만든 캐스팅 용액 중에 metal salt의 농도를 변화시켜 막의 투과성능을 조사하였다. 투과성능은 산소와 질소의 투과계수와 선택도로 평가하였다. 또한 막형성의 메커니즘을 이해하고 규명하고자 하였다.

이론

막을 통한 기체의 투과속도 J는 Fick의 제1법칙을 따른다.

$$J = -D\frac{dC}{dx} \tag{1}$$

여기서 D는 막을 통한 기체의 확산계수, C는 막내의 기체의 농도,

x는 막내의 위치 0≤x≤L 이다. L은 막의 두께이다.

한편, 고분자막이 고무 상태에 있다면 C는 다음과 같이 표현된다.

$$C = S \cdot p \tag{2}$$

S는 용해도계수이고, p는 평형 압력이다. 그러므로 (1)식은 다음과 같이 된다.

$$J = -DS\left(\frac{dp}{dx}\right) = -P\left(\frac{dp}{dx}\right) \tag{3}$$

$$P = D \cdot S \tag{4}$$

P는 투과계수이다.

이상분리계수는 다음과 같이 첨자 A , B성분의 투과계수비로 표현된다.

$$\alpha_{\rm AB} = \frac{P_{\rm A}}{P_{\rm B}} \tag{5}$$

실험

1) polyimide 합성

p-TeMPD(Aldrich Co.)를 100℃에서 24시간 건조시킨 후 항온수조 속에 있는 질소분위기의 삼각플라스크에 넣고 극성용매인 DMAc를 용해시킨다. 그런 다음 200℃의 진공건조기내에서 건조시킨 6FDA(Chriskev Co.)를 등몰비가 되도록 서서히 가하여 두 단량체의 농도가 전체의 15wt%가 되도록 하였다. 상온(25℃)에서 충분히 교반한 후 polyamic acid(PAA)용액을 합성하였다. 이 용액 속에 acetic anhydride와 triethylamine을 단량체 농도의 4배 몰 비가 되도록 첨가한 후 상온에서 2시간, 50℃에서 질소가스로 배기시키면서 충분한 점도가 생길 때까지 반응시킨 후 메탄올에 12시간동안 담근 후 70℃ 진공건조기에서 24시간동안 건조하여 polyimide를 제조하였다.

Fig. 1 Polyimide(6FDA-p-TeMPD) synthesis mechanism.

2) 막의 제조

polyimide 막은 THF에 용해시킨 후 metal salt를 농도 따라 첨가하여 고분자용액을 제조하였다. 이 용액은 유리판 위에 applicator로 캐스팅한 후 실온에서 용매를 1분 동안 증발시킨 후 비용매인 응고매체($0^{\circ}C$, H_2O)에 12시간 침적하고 고분자 필림을 유리판에서 떼어낸다. 이 필림은 실온에서 24시간 진공건조기에서 24시간동안 건조하여 막을 만들었다.

막의 두께는 20~28μm였다.

3) 투과실험

기체투과 실험은 온도 25° C와 압력 $1{\sim}4atm$ 에서 수행하였다. 투과셀의 유효투과면적은 $12.56cm^2$ 이고, 기체 투과 량은 용적법에 의해 측정하였다. 산소와 질소의 투과 곡선으로부터 투과 계수와 O_2/N_2 선택도를 구하였다. 실험에 사용한 산소(Union Gas Corp.)와 질소(이하 Shin-il Gas Corp.)의 순도는 99.9% 이상이었다.

결과 및 고찰

Fig. 2는 25℃에서 metal salt(CoCl₂ · 6H₂O, CuCl₂ · 2H₂O)의 농도가 다른 막에 대하여 압력변화에 따른 산소, 질소 투과계수를 나타낸 것이다. 각각의 막에 대하여 압력차의 증가에는 관계없이 투과계수는 거의 일정하였다. 투과계수 또한 누적투과 곡선에서 나타난 투과량 순서는 CoCl₂ · 6H₂O인 경우 질소투과는 2.5%<1%<4%<0%순이고, 산소투과는 1%<2.5%<4%<0%순으로 나타났고, CuCl₂ · 2H₂O인 경우 질소투과는 1%<0%<2.5%<4%<0% 순이 기, 산소투과도 역시 같은 순으로 나타났다.

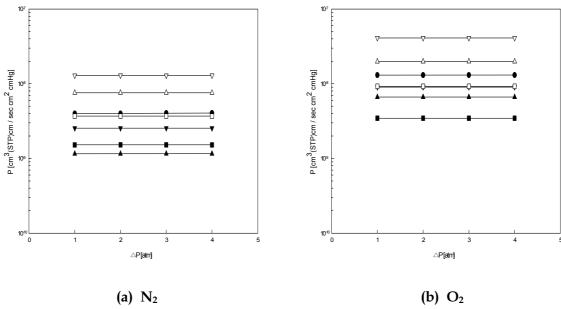


Fig. 2. Permeability coefficients as a function of pressure difference in polyimde/THF/metal salt membrane at 25°C: Metal salt concentration $CoCl_2 \cdot 6H_2O$ (\bullet)0wt%, (\bullet)1wt%, (\bullet)2.5wt%, (\blacktriangledown)4wt%; $CuCl_2 \cdot 2H_2O$ (\Box)1wt%, (\triangle)2.5wt%, (∇)4wt%.

Fig. 3은 각각의 metal salt의 농도에 대한 질소, 산소 투과계수와 분리계수(P_{O2}/P_{N2})의 상관관계를 나타내고 있다. $CoCl_2 \cdot 6H_2O$ 를 첨가한 경우 산소투과계수는 증가하지 않았으나 선택도는 현저히 증가하였다. $CuCl_2 \cdot 2H_2O$ 가 4wt%인 막에서는 비교적 높은 산소투과도(P_{O2}) 410 Barrer를 보이고 있고 선택도(P_{O2}/P_{N2b})는 3.18를 갖는다.

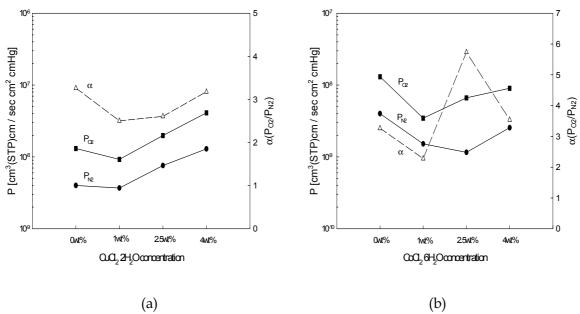


Fig. 3. Correlation of permeability coefficients and separation factors as a function of metal salt concentration at 25° C, 1atm: (a)CuCl₂ · 2H₂O, (b)CoCl₂ · 6H₂O

참고문헌

- 1. S. L. Matson, J. Lopez, and J. A. Quinn, Chem. Eng. Sci., 38, 503 (1983)
- 2. S. T. Hwang and K. Kammermeyer, "Membrane in separation", $Ch.2\sim5$, John Wiley & Sons, Inc., New York (1975)
- 3. W. J. Koros, R. Mahajan, Pushing the limits on posibilities for large scale gas separation; which strategies? *J. Membr. Sci.* 175, 181 (2000)
- 4. D. R. Paul, J. Polym. Sci., A2, 7, 1811 (1969)
- 5. W. J. Koros, G. N. Smith and V. Stannet, J. Appl. Polym. Sci., 26, 159 (1981)
- 6. D. R. Paul and W. J. Koros, J. Polym. Sci., Polym. Phys. Ed., 14, 675 (1976)
- 7. H. Ohya, V. V. Kudryavtsec, S. I. Semenova, "Polyimide Membranes" (1996)