MHVPE(Modifided Hydride Vapor Phase Epitaxy)법을 이용한 GaN성장에서의 전처리 공정에 관한 연구

<u>한승훈</u>, 여석기, 윤덕선, 도창주, 박진호 영남대학교 응용화학공학과

Stueies on the pre-treatment of GaN Growth by MHVPE(Modifided Hydride Vapor Phase Epitaxy)

<u>Seunghun Han</u>, Seokki Yeo, Deoksun Yoon, Changjoo Doh, Chinho Park School of Chemical Engineering and Technology, Yeungnam University

<u>서론</u>

GaN는 상온에서 3.39 eV의 직접천이형 금지대 폭(direct band-gap)을 가지는 화합물 반도체로서 물리적으로 안정하며 매우 우수한 열적 특성을 가지고 있어 광전자 (optoelectronic) 및 고온 전자소자(high temperature electronic device)에서의 응용이 가 능하다. 또한 GaN를 바탕으로 한 질화물 소자의 경우 기존의 SiC를 사용한 청색 LED에 비해 휘도와 수명 및 내부양자효율(internal quantum efficiency)이 우수하여 청색 LED 뿐만 아니라 대형전광판, 교통신호등, 전구등에 활용될 것으로 예상된다¹⁾. 특히 청색 LD(laser diode)가 상용화된다면 DVD(digital versatile disc)를 비롯한 차세대 초고밀도 정보저장 매체, 고정밀 컬러 스캐너 및 프린터, 레이저 디스플레이 등에 응용될 수 있는 무한한 잠재력을 가지고 있다²⁾.

GaN 박막증착과 관련하여 가장 큰 문제점은 양질의 후막 단결정 기판의 부재에 있다. GaN 성장시 기판으로 널리 사용되고 있는 c-plane sapphire 기판과 GaN의 격자상수 불 일치(약 16%)와 열팽창 계수의 차이(약 25 %)로 인해 성장된 GaN 박막은 높은 결함 (defect) 밀도를 가진다. 또한 LD의 동작시 높은 문턱전압(threshold voltage)을 필요로 하는 원인이 되고³⁾, 소자의 신뢰도나 효율에 많은 문제점을 일으킬 수 있다. 따라서 이와 같은 문제점들을 근본적으로 해결하기 위한 방편으로 homoepitaxy 성장에 적합한 GaN 기판을 제작하기 위한 연구가 활발히 진행되고 있다^{4~5)}. 현재 연구되고 있는 여러 가지 증착기술 중 GaAs와 같은 III-V족 반도체 증착에 널리 사용되어 온 HVPE(Hydride Vapor Phase Epitaxy)법은 결정성장 속도가 시간당 수십 µm인 이점이 있기 때문에 넓은 면적을 갖는 준벌크(quasi-bulk) GaN 기판 제조의 실현 가능성이 높은 기술로 알려져 있 다^{6~7)}. 그러나 HVPE 법에 의해 성장된 GaN 박막은 증착속도가 빠른 반면 표면 거칠기 가 크고 박막내의 결함이 많으며 공정제어 및 재현성에 많은 문제점을 가지고 있다.

본 연구에서는 기존의 HVPE법을 개선한 modified HVPE 반응 장치를 이용하여 면적 이 10 × 10 빼인 sapphire 기판 위에 GaN을 증착시켰다. sapphire 기판의 전처리 조건 (seed GaN의 공정변수)을 변화시켜가며 성장시킨 GaN 박막의 특성을 비교 분석하였다.

<u>실험</u>

본 연구에서는 GaN 성장을 위해 기존의 HVPE법을 개선한 modified HVPE 반응 장치 를 설계, 제작하였으며 이 장치를 사용하여 GaN을 성장 시켰다. III족 source로는 HVPE 법에서 사용한 Ga(1)대신 고순도의 TMGa(trimethyl gallium)(1)와 HCl을 반응시켜 생성 된 GaCl을 사용하였고, V족 source로는 NH₃(ammonia)를 사용하였으며 반응기 내부로 주입되는 가스들은 MOCVD(Metal Organic Chemical Vapor Deposition)의 원료공급 방 식을 채택하여 기상에서 MFC(mass flow controller)를 사용하여 유량을 조절함으로써, 반응가스의 유량조절이 용이하도록 하였다. GaN 증착에 사용된 기판은 두께가 350 µm이 며 크기가 10 × 10 ㎡ 인 (0001)면의 sapphire 기판으로써 trichloroethylene(TCE), acetone, methanol의 유기 용매로 초음파 세척한 후 고순도의 N₂ 가스가 purge 되고 있 는 반응기 내부의 증착 지역으로 이동시켜 전기로의 온도를 970 ℃ 까지 상승시켰다. 전 기로의 온도가 970 ℃에 도달하면 NH₃ 가스를 흘려 sapphire 기판을 10 min동안 질화처 리 한 후 자연 냉각하여 저온에서 TMGa 와 NH₃를 흘려주어 seed GaN를 성장시켰다. seed GaN를 성장시킨 후, 후막 GaN를 성장시키기 위해 전기로의 온도를 다시 970 ℃로 올린 후 TMGa, NH₃, HCl 가스를 주입하여 GaN을 성장시켰다. 성장이 완료되면 TMGa, HCl 가스만 차단하고 NH₃와 N₂ 가스는 계속 흘려 보내주어 냉각될 동안 성장된 GaN이 재분해 되는 것을 방지하였다.

본 연구에서는 저온에서 seed GaN 성장시의 공정 변수를 변화시켜 최적의 공정조건을 찾고자 하였다. seed GaN 성장 및 후막 GaN 성장의 실험 조건을 Table 1.에서 나타내었다.

Growing	Substrate	Growth	Growth	Pressure	HCl/TMGa	V/III ratio
layer		time	Temp. (℃)	(atm)	ratio	
seed GaN	Al ₂ O ₃	10 sec ~10 min	550 ~650	1	_	130 ~ 370
main GaN	(c-plane)	30 min	900 ~1050	1	1.25 ~ 3.20	80 ~250

Table 1. seed GaN 및 후막 GaN 성장을 위한 실험 조건

이렇게 성장된 GaN 막의 두께와 표면의 상태를 알아보기 위해 SEM(Scannining Electron Microscopy)과 AFM(Atomic Force Microscopy)을 이용하여 분석 하였으며, 이 중결정 X-선 회절(HR-XRD) 장치를 이용하여 결정의 품질을 평가하였다. 광학적 성질은 광출력이 40 mW인 He-Cd 레이저를 광원으로 사용하여 상온에서 PL(photo luminescence)를 측정하여 평가하였다.

결론

Fig. 1 은 sapphire 기판 위에 성장된 GaN의 SEM 표면 사진으로서, 기판에 NH₃로 질 화처리를 한 후 저온에서 seed GaN의 성장 시간에 따른 GaN의 morphology의 변화를 나타내었다. seed GaN의 성장시간이 10 sec인 sample을 제외한 모든 main-GaN의 표면 이 거울면 상태인 것을 확인할 수 있었으며 30 sec ~ 1 min 동안 seed GaN를 성장 시 켰을 때 pit이 거의 관찰되지 않았다. 이는 이전에 seed GaN공정 없이 성장된 main-GaN 에 비해 표면이 상당히 개선되었으며 이를 확인하기 위해 AFM을 이용하여 main-GaN layer의 roughness를 확인한 결과 seed GaN의 성장시간에 관계없이 측정한 모든 GaN 막은 대략 약 10 Å의 Rms값을 나타내었다. Fig.2는 성장된 GaN의 HR-XRD의 FWHM 의 결과를 나타낸 그림이다. HR-XRD를 이용하여 GaN의 결정성을 측정하였으며 seed GaN의 성장시간이 감소할수록 FWHM(Full Width at Half Maximum)값이 감소함을 알 수 있었다. 또한 seed GaN를 사용하지 않고 성장시킨 GaN의 FWHM보다 매우 작은 값 을 나타냄을 알 수 있었다. 따라서 고온에서의 질화처리 후, 저온 seed growth공정은 main-GaN laver의 결정성을 상당히 향상시키고 있음을 알 수 있었다. seed GaN의 성장 시간이 10 sec 일 때 가장 좋은 HR-XRD의 FWHM값을 가졌으나 표면이 불투명하고 rough하므로 본 연구에서는 seed GaN의 성장시간이 20 sec를 적정 성장시간으로 놓고 seed GaN의 최적 성장 조건을 찾기 위해 V/III ratio와 seed GaN의 성장 온도에 대해서 main-GaN의 결정성을 조사해 보았다.

Fig. 4는 seed growth공정의 V/III ratio에 변화에 따른 HR-XRD의 FWHM값을 나타내 었다. V/III ratio를 변화시켰을 경우 모두 거울면 상태의 표면를 얻었으며 V/III ratio가

화학공학의 이론과 응용 제8권 제2호 2002년

100 ~ 250에서는 FWHM값이 증가하다가 V/III ratio가 300일 때 가장 작은 FWHM값을 얻을 수 있었다. Fig. 5는 seed GaN의 성장온도에 따른 main-GaN의 FWHM값을 나타 낸 그림이다. seed GaN의 성장온도가 550 ~ 625 ℃까지는 HR-XRD의 FWHM이 계속 적인 감소추세를 보이다가 650 ℃에서 급격히 증가하는 것을 확인할 수 있었다. 또한 550 ~625 ℃까지는 main GaN이 거울면 상태의 표면을 나타내었으나 650 ℃에서는 상 당히 rough한 표면이 관찰되었다.

PL을 통하여 seed layer의 성장시간이 20 sec인 GaN의 광학적 특성을 살펴보았으며, 이를 Fig. 6에 나타내었다. 3.4 eV에서 엑시톤에 의한 발광 peak를 관측할 수 있었으며 이때의 FWHM은 122 meV이었다. 또한 2.2 eV 부근에서 yellow band를 관찰할 수 있었 으며, 이는 반응기 내부에 잔존해 있는 산소나 수분 혹은 성장된 GaN 내부의 defect등으 로 발생한 impurity level에 기인하는 것으로 추정된다.

이상의 결과로부터 seed layer 공정을 통해 main-GaN의 결정성 향상 및 표면 개질의 효과가 있음을 확인할 수 있었으며 최적 공정조건으로는 seed layer의 성장시간이 20 sec, V/III ratio 가 300, 성장온도가 625 ℃ 일 때 가장 좋은 결과를 얻을 수 있었다.

<u> 참고문헌</u>

- 1. S. Nakamura, The Blue Laser Diode, Springer-Verlag, Berlin (1997)
- 2. S. Nakamura, T. Mukai, and M. Senoh, Appl, Phys. Lett., 64, 1687 (1994)
- W. Gotz, L.T. Romano, B.S. Krusor, N.M. Johanson, and R.J. Molnar, *Appl. Phys. Lett.*, **69**, 242 (1996)
- 4. Compound Semiconductors, 3, 10 (1997)
- 5. C. Sasaoka, H. Sunakawa, A. Kimura, M. Nido and A. Unsi, ICNS' 97, Tokushima Japan, S-4 (1997)
- T. Detchprom, T. Kuroda, K. Hiramasu, N. Sawaki and H. Goto, *Inst. Phys. Conf* Ser., 142, 859 (1996)
- 7. T. Detchprom, K. Hiramatsu, K. Itoh and I. Akasaki, *Jpn H. Appl. Phys.*, **31**, L1454 (1992)

Fig. 1 Figure 1. SEM images of GaN grown by modified HVPE method using low temp. seed growth.

(a) without seed growth, (b) 7 nm, growth time: 10 sec, (c) 14 nm, growth time: 20 sec, (d) 21 nm, growth time: 30 sec, (e) 43 nm, growth time: 1 min, (f) 129 nm, growth time: 5 min, (g) 430 nm, growth time: 10 min

Figure 2. FWHM of double crystal of GaN films as a function of seed layer thickness

Figure 4. FWHM of double crystal of GaN films as a function of seed growing temp.

Figure 3. FWHM of double crystal of GaN films as $NH_3/TMGa$ ratio of seed growth

Figure 5. PL spectrum of GaN film grown by modified HVPE (@297 K) with seed layer