A study on the sensing properties of SnO₂-based thick-film gas sensors for the chemical agent simulants

<u>이우석</u>, 이수출, 이수재, 이덕동¹, 김재창* 경북대학교 화학공학과; ¹경북대학교 전자전기공학부 (kjchang@knu.ac.kr*)

A semiconductor gas sensor based on SnO_2 was studied at a low concentration range of chemical agent simulants such as acetonitrile, DMMP, DPM and dichloromethane from 0.02ppm to 0.8ppm at 350°C. The sensing properties of SnO_2 -based gas sensors such as sensitivity, response, recovery and reproducibility were investigated by using a flow measuring system. For acetonitrile and dichloromethane, P-SnO₂ sensor prepared by precipitated SnO₂ powder with small particle size and high surface area was more sensitive than C-SnO₂ sensor prepared by commercial SnO₂ powder with large particle size. While, in the cases of DMMP and DPM, the sensitivities of C-SnO₂ sensor were higher than those of P-SnO₂ sensor. These sensitivities of SnO₂ sensors were closely related to the physical properties such as particle size, surface area, and pore size of the SnO₂ powders in addition to the molecular sizes of the detecting gas. The recovery of SnO₂-based sensors seemed to be possible for acetonitrile and DPM. However, in the cases of DMMP and dichloromethane, the complete recovery of SnO₂-based sensors was impossible because of poisoning.