Photocatalytic Water Splitting Over Deficient-Electron Iron Oxide Intercalated in HTiNb(Ta) O₅ Layered Perovskites Under Visible Light Irradiation

<u>장점석</u>, 김현규¹, 배상원¹, 지상민¹, 이재성^{*1} 포항공과대학교 환경공학부; ¹포항공과대학교 화학공학과 (jlee@postech.ac.kr^{*})

Intercalation of semiconductor oxide with small bandgap into interlayer of layered perovskite is an attractive method to develop photocatalysts active under visible light region. In research, we intercalated iron oxide(Fe₂O₃) into the interlayer space of layered perovskite (HTiNb(Ta)O₅) by a guest exchanged reaction using iron trinuclear acetate -hydroxocation, [Fe₃CH₃COO)₇(OH)(H₂O)₂]⁺). We investigated the electronic and local coordination structures of the iron oxide stabilized between the titania-niobate and titania-tantalate layers by X-ray absorption near edge spectroscopy (XANES) and also the oxidation structures of the iron oxide stabilized between the layers of perovskite material were in general similar to those of Fe₂O₃(Fe(III)) state rather than FeO(Fe(II)). Finally, we investigated the photocatalytic activity of intercalated HTiNb(Ta)O₅ layered perovskite under visible light.