Correlation between Acidic Properties of Nickel Sulfate Supported on TiO₂-ZrO₂ and Catalytic Activity for Ethylene Dimerization

<u>배무희</u>, 손종락*, 임준섭 경북대학교 (jrsohn@knu.ac.kr*)

A series of catalysts, NiSO₄/TiO₂-ZrO₂, for ethylene dimerization was prepared by the impregnation method using an aqueous solution of nickel sulfate. Calcination at 300–600 °C of coprecipitated Ti $(OH)_4$ -Zr $(OH)_4$ resulted in the formation of an amorphous phase and further heating at 700 °C and above resulted in the formation of crystalline ZrTiO₄ compound. The addition of nickel sulfate to TiO₂-ZrO₂ shifted the phase transition of TiZrO₄ from amorphous to orthorhombic to higher temperature because of the interaction between nickel sulfate and TiZrO₄, and the specific surface area and acid amount of NiSO₄/TiO₂-ZrO₂ increased in proportion to the nickel sulfate content up to 10–20 wt% of NiSO₄. Nickel sulfate supported on TiO₂-ZrO₂ was found to be very active even at room temperature, giving a maximum in both activity and acidity when catalyst containing 20 % NiSO₄ was calcined and evacuated at 500 °C. The high catalytic activity of NiSO₄. The asymmetric stretching frequency of the S=O bonds for NiSO₄/TiO₂-ZrO₂ samples was related to the acidic properties and catalytic activity.