The Regenerable Potassium-Based TiO, Sorbents for CO, Absorption

<u>최보윤</u>, 김재창*, 이수출, 안영수¹, 류청걸² 경북대학교; ¹에너지기술연구소; ²한국전력연구원 (kjchang@mail.knu.ac.kr*)

The CO₂ capture capacity and regeneration property were measured in the presence of H₂O in a fixed bed reactor, during multiple cycles at various temperature conditions. Sorbents such as K₂CO₃/AC, K₂CO₃/TiO₂, K₂CO₃/MgO, and K₂CO₃/Al₂O₃ showed excellent CO₂ capture capacity (86, 83, 119, 85 mg CO₂/g sorbent, respectively). In the case of K₂CO₃/AC and K₂CO₃/TiO₂, it was possible to regenerate even within a low temperature range, due to the formation of a KHCO₃ crystal structure during CO₂ absorption, unlike K₂CO₃/Al₂O₃ and K₂CO₃/MgO. In particular, the rate of regeneration of the new sorbent (K₂CO₃/TiO₂) was a little more than that of K₂CO₃/AC even at low temperatures. These results indicate that the nature of support plays an important role for CO₂ absorption and regeneration capacities and, in particular, the formation of the KHCO₃ crystal structure during CO₂ absorption is an important factor for regeneration, even at the low temperature. Considering that the regeneration capacity was an important factor for a sorbent in addition to the CO₂ capture capacity, K₂CO₃/TiO₂ could be used as a sorbent that had the potential for CO₂ absorption.