$\label{eq:2.2} \mbox{Preparation & Characterization of Thermally Stable Porous TiO_2 Catalyst by Modified Sol-Gel Method with Ionic Liquid TiO_2 Catalyst by Modified Sol-Gel Method with Ionic Liquid TiO_2 Catalyst by Modified Sol-Gel Method TiO_2 Catalyst by $$

<u>최은형</u>, 유계상, 안병성, 홍석인¹, 문동주* 한국과학기술연구원; ¹고려대학교 (djmoon@kist.re.kr*)

It is well known the porous anatase form, as compared to the rutile phase, is of greater important and interest due to its better catalytic properties. However, anatase crystalline phase of TiO_2 is metastable and transformed into rutile at high temperatures. To overcome the disadvantage, in our previous work, the TiO_2 particles with high surface area, stable crystal structure and controlled porosity, even high temperature, were synthesized by ionic liquid (IL)-assisted sol-gel method. But the method has crucial drawbacks such as highly consumption of expensive ionic liquid and extra process to remove ionic liquid with organic solvents. In this work, a small amount of IL was employed into the conventional sol-gel method using acetic acid as an additive material. By this approch, thermally stable porous TiO_2 was successfully prepared with only 1% IL of previous work. The prepared TiO₂ samples were characterized by XRD, N₂ isotherm and TEM.