Development of the regenerable Potassium–based TiO_2 sorbent for CO_2 capture at the low temperature

<u>이수출</u>, 채호진, 최보윤, 안영수¹, 류청걸², 김재창^{*} 경북대학교; ¹한국에너지기술연구원; ²한국전력연구원 (kjchang@knu.ac.kr^{*})

Potassium-based sorbents were prepared by impregnation with K_2CO_3 on supports such as activated carbon (AC), TiO₂, Al₂O₃, MgO, SiO₂ and various zeolites. The CO₂ capture capacity and regeneration property were measured in the presence of H₂O in a fixed bed reactor (CO₂ capture at 60°C and regeneration at 130–400°C). Sorbents such as KACI, KTiI, KMgI, and KAII, which showed excellent CO₂ capture capacity after the pretreatment in the presence of H₂O, could be completely regenerated above 130°C, 130°C, 350°C, and 400°C, respectively. In the case of KACI and KTiI, a KHCO₃ crystal structure was formed during CO₂ absorption, unlike KAII and KMgI. This phase could be easily converted into the original phase during regeneration, even at low temperatures below 150°C. In particular, the KTiI30 sorbent developed in this study showed excellent characteristics in CO₂ absorption without the pretreatment of H₂O and fast and complete regeneration at a low temperature condition (1 atm, 150°C).