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Introduction 
Proportional integral derivative (PID) controllers have been the most popular [1-6] and widely used 
controllers in process industries because of their simplicity, robustness and wide range of applicability 
with near-optimal performance. However, it has been noticed that many PID controllers are often 
poorly tuned and need to resolve this matter. The effectiveness of the internal model control (IMC) 
design principle has made it attractive in process industries, where many attempts have been made to 
exploit the IMC principle to design PID controllers for both stable and unstable processes Morari and 
Zafiriou [1]. The IMC-PID tuning rules have the advantage of only using a single tuning parameter to 
achieve a clear trade-off between the closed-loop performance and robustness. The PID tuning 
methods proposed by Rivera et al. [2], Morari and Zafiriou [1], Horn et al. [3], Lee et al. [4] and 
Skogestad [6] are typical examples of the IMC-PID tuning method. The direct synthesis for 
disturbance (DS-d) method proposed by Chen and Seborg [5] computing the ideal feedback controller 
which gives a predefined desired closed-loop response. The control performance can be significantly 
enhanced by cascading the PID controller with a lead/lag filter, as given by Eq. (1).  
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The structure of the PID controller cascaded with a filter was also suggested by many researchers [1-4]. 
The PID·filter controller in Eq. (1) can easily be implemented in modern control hardware. The PID 
controller based on the IMC principle provides excellent set-point tracking, but has a sluggish 
disturbance response, especially for processes with a small time-delay/time-constant ratio. Since 
disturbance rejection is much more important than set-point tracking for many process control 
applications, a controller design that emphasizes the former rather than the latter is an important 
design goal that has been the focus of renewed research recently. 
In the present study, a simple and efficient method is proposed for the design of a PID·filter controller 
with enhanced performance. A closed-loop time constant λ guideline is recommended for a wide range 
of time-delay/time-constant ratio.  
IMC Controller Design Procedure 
In the IMC block diagram (Morari and Zafiriou [1]) the output responses is related as (nominal case 
i.e., P PG G= % ), (1 )P P Dy G qr G q G d= + − % , where PG  is the process, PG%  the process model, q the IMC 
controller, Rf the set-point filter. According to the IMC parameterization (Morari and Zafiriou [1]), the 
process model PG%  is factored into two parts:  

P m AG p p=%                                                                                                                               (2) 
where pm is the portion of the model inverted by the controller, pA is the portion of the model not 
inverted by the controller and pA(0)=1. The noninvertible part usually includes the dead time and/or 
right half plane zeros and is chosen to be all-pass. 
To obtain a good response for processes with poles near zero, the IMC controller q should be designed 
to satisfy the following conditions. (i) If the process pG  has poles near zero at 1 2, , , mz z zL , then q  
should have zeros at 1 2, , , mz z zL . (ii) If the process DG  has poles near zero, 1 2, , ,d d dmz z zL , then 1 PG q−  
should have zeros at 1 2, , ,d d dmz z zL .  
Since the IMC controller q  is designed as 1

mq p f−= , the first condition is satisfied automatically. The 
second condition can be fulfilled by designing the IMC filter f as ( )1 1 ( 1)m i r

i if s sβ λ== ∑ + + , where λ  is 
an adjustable parameter which controls the tradeoff between the performance and robustness; r  is 
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selected to be large enough to make the IMC controller (semi-)proper; iβ  are determined by Eq. (3) to 
cancel the poles near zero in DG .  
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Then, the IMC controller comes to be 1
1( 1) ( 1)m i r

m i iq p s sβ λ−
== ∑ + + . Thus, the closed-loop response is   
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From the above design procedure, one can achieve a stable closed-loop response by using the IMC 
controller. 
PID·filter Design for FOPDT Process  
The ideal feedback controller that is equivalent to the IMC controller can be expressed in terms of the 
internal model PG%  and the IMC controller q ( )1c PG q G q= − % . Substituting Eqs. (3) and (6) into (8) gives 

the ideal feedback controller:  
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Let us consider the first order plus dead time (FOPDT) process, which is most widely utilized in the 
chemical process industries, as a representative model.  
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The IMC filter structure is ( ) ( )21 1f s sβ λ= + + . It is noticed that the IMC filter in this form was also 
utilized by Lee et al. [4] and Horn et al. [3]. The resulting IMC controller becomes 

( )( ) ( )21 1 1q s s K sτ β λ= + + + . Therefore, the ideal feedback controller is obtained as 
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                                                                                                                           (7) 

Since the ideal feedback controller in Eq. (7) does not have the PID·filter controller form, the 
remaining issue is how to design the PID·filter controller that approximates the ideal feedback 
controller most closely. Approximating the dead time se θ−  with a 2/2 Pade expansion 

( ) ( )2 2 2 21 2 12 1 2 12se s s s sθ θ θ θ θ− = − + + + , results in cG  as  

( ) ( )

( ) ( )

2 2

2 2 2 2
2

1 1 1
2 12

1 1 1 1
2 12 2 12

c

s ss s
G

s s s sK s s

θ θτ β

θ θ θ θλ β

 
+ + + +  

 =
    

+ + + − + − +            

                                                                                                            (8) 

The 2/2 Pade approximation is precise enough to convert the ideal feedback controller into a finite 
dimensional feedback controller with barely any loss of accuracy and rearranging Eq. (8) gives 
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As seen in Eq. (16), the resulting controller has the form of the PID controller cascaded with a high 
order filter. The analytical PID formula can be obtained as      

( ) ; ;
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                                                                                                           (10) 

The value of the extra degree of freedom β  is selected so that it cancels out the open-loop pole at 
1s τ= −  that causes a sluggish response to load disturbances. From Eq. (3), this requires 
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. Thus, the value of β  is obtained as  
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Furthermore, it is obvious from Eq. (3) that the remaining part of the denominator in Eq. (9) contains 
the factor ( )1sτ + . Therefore, the filter parameter b in Eq. (1) can be obtained below  
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and substituting 0s =  as 
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The filter parameter a in Eq. (1) can be easily obtained from Eq. (11) as a β= . Since the high order 
2cs term has little impact on the overall control performance in the control relevant frequency range, 

the remaining part of the fraction in Eq. (9) can be successfully approximated to a simple first order 
lead/lag filter as (1 ) /(1 )as bs+ + . Our simulation result (although not shown in this paper) also confirms 
the validity of this model reduction.  
Simulation Study 
Example 1. Lag time dominant process ( )0.01θ τ =  

Consider the following FOPDT process (Chen and Seborg, [5]):   
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The proposed PID·filter controller is compared with other controllers (Proposed method: λ =1.131, 
Kc=0.124, τI= 0.50, τD=0.167, a=3.222, b=0.139, ( ) ( )1.45 1 3.22 1Rf s s= + + , ITAE disturbance= 14.55, ITAE 
setpoint= 1.96; Lee et al.: λ =1.330, Kc=0.806, τI= 3.947, τD=0.3068, ( )1 3.66 1Rf s= + , ITAE 
disturbance= 19.77, ITAE setpoint= 8.46; DS-d: λ =1.202, Kc=0.826, τI= 0.826, τD=4.059, 

( ) ( )22.03 1 1.43 4.06 1Rf s s= + + + , ITAE disturbance= 20.43, ITAE setpoint= 3.13; Horn et al.: λ =1.689, Kc=15.038, τI= 
15.038, τD=0.497, a=4.311, b=100.2, c=21.34, ( )1 4.31 1Rf s= + , ITAE disturbance= 31.18, ITAE 
setpoint= 12.45; Rivera et al.: λ =0.408, Kc=0.714, τI= 100.50, τD=0.4975, b=0.145, ITAE disturbance= 
3785.0, ITAE setpoint= 3.86; Lee et al.(CF): λ =0.248, Kc=0.805, τI=100.407, τD=0.399, ITAE 
disturbance= 3354.0, ITAE setpoint= 3.15). In order to ensure a fair comparison, all of the controllers 
compared are tuned to have 1.94Ms =  by adjusting λ . Figure 1 compares the set-point and load 
responses obtained using the proposed method, the DS-d method, and the methods proposed by Lee et 
al. and Horn et al. and the set-point filter has been used enhanced servo response. It is important to 
note that the set-point filter used for the set-point response has a clear benefit when the process is lag 
time dominant. From the above performance indices, ITAE value and Fig.1 show that the proposed 
method has great advantage over other method. The simulation results (although not shown in this 
paper) also confirms that the robustness of the proposed controller has better compare to other 
methods.   
Closed-loop time constant λ  guideline 
In the proposed tuning rule, the closed-loop time constant λ controls the tradeoff between the 
robustness and performance of the control system. As λ decreases, the closed-loop response becomes 
faster and can become unstable. On the other hand, as λ  increases, the closed-loop response becomes 
stable but sluggish. A good tradeoff is obtained by choosing λ to give an Ms value in the range of 
1.2 ~ 2.0 . The λ  guideline for several robustness levels is plotted in Fig. 2.  
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Conclusions 
A simple analytical design method for a PID controller cascaded with a lead/lag filter was proposed 
based on the IMC principle in order to improve its disturbance rejection performance. The proposed 
method also includes a set-point filter to enhance the set-point response like as the 2DOF controller 
suggested by Lee et al., [4], Horn et al., [3] and Chen and Seborg, [5]. The proposed PID·filter 
controller consistently provides superior performance over the whole range of the θ τ  ratio, while the 
other controllers based on the IMC-PID design methods take their advantage only in a limited range of 
the θ τ  ratio. In particular, the proposed controller shows excellent performance when the lag time 
dominates. The closed-loop time constant λ  guideline was also proposed for a wide range of θ τ  ratio.   
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