The effect of noble metal on the LDH Ni/MgAl catalysts in operation of LPG steam reforming

<u>김대현</u>, 이병권, 신동현¹, 윤영식¹, 김명준¹, 홍석인², 문동주* 한국과학기술연구원; ¹SK(주); ²고려대학교 (dimoon@kist.re,kr*)

The effects of noble metal addition on the activity and stability of layered double hydroxide (LDH) Ni/MgAl catalysts were investigated in the operation of LPG steam reforming at a temperature range of 600 \sim 850°C, feed molar ratio of $\rm H_2O/C=1.0\sim3.0$, space velocity of 20,000 $\rm h^{-1}$ and atmospheric pressure. LDH Ni/MgAl hydrotalcite catalysts were prepared by a co-precipitation method and calcined to form Mg(Al,Ni)O periclase. The powders of periclase were dipped in aqueous solution of an noble metal chloride, dried at 110°C and calcined at 850°C for 5h. To compare with the activity, Ni/MgO and Ni/Al $^2\rm O^3$ catalysts were prepared by an incipient wetness method. The characteristics of the fresh and used catalysts were analyzed by $\rm N_2$ Physisorption, CO Chemisorption, XRD, SEM and TEM. The noble metal modified LDH Ni/MgAl catalyst showed higher molar ratio of $\rm H_2/CO$ than the other catalysts under the tested conditions.