NO and SO₂ removal in TiO₂-coated glass beads packed bed plasma reactor

<u>나소노바 안나</u>, 김동주, 김교선* 강원대학교 (kkyoseon@kangwon.ac.kr*)

We analyzed the simultaneous NO and SO_2 removal in the dielectric barrier discharge process combined with photodegradation, changing several process conditions such as applied peak voltage, initial NO concentration and residence time on NO and SO_2 removal efficiencies. We used the dielectric packed-bed cylinder-wire type reactor for NO and SO_2 removal. To consider photocatalytic effect on NO and SO_2 removal, glass beads were coated with TiO_2 using dip-coating method. As applied voltage and residence time increase or initial NO concentration decreases, NO and SO_2 removal efficiencies increase.