Pyrolysis of Biomass using Cobalt–based Catalysts with changing supports for $\rm H_2$ production

<u>최용근</u>, 제이타, 손재익, 박대원* 서울산업대학교 에너지환경대학원 (daewon@snut.co.kr*)

Studied on the catalytic pyrolysis of biomass using Co-based catalysts with different supports to produce H_2 -rich product gases. In these catalysts, Cobalt was maintained at the composition of 30wt%; and four types of supports are used (Al_2O_3 , CeO_2 , Cr_2O_3 and ZrO_2) at its of 70wt%. The catalysts were prepared by co-precipitation method and the papers were adapted as biomass sample. In the process of pyrolysis, 1g of biomass was mixed with 0.1g of each catalyst as 10% of the sample weight. The temperature was increased from room temperature to 800°C at the heating rate of 10°C/min. Most catalysts had shown to increase the yield of H_2 with increasing the temperature and had shown best result at 800°C for the residence time of 10min except Co/ZrO_2 catalyst. The volume of H_2 -gas had reached the highest value (8.11ml) in Co/Cr_2O_3 . Its accumulated H_2 volume from 600°C to 800°C was the value of 10.3ml. From the results it can be concluded that, the change of supports in the catalysts have influenced in the H_2 -gas production. Among all the catalysts, Co/Cr_2O_3 has shown the best during the process of pyrolysis.

2850