$\label{eq:characterization} Characterization of nanoporous Fe-Si_{x}Al_{1-x}O_{y} \mbox{ particles for hydrogen generation from the thermochemical water splitting}$

<u>송이화</u>, 박승빈^{1,*}

Department of Chemical and Biomolecular Engineering, KAIST; ¹Department of Chemical and Biomolecular Engineering & Center for Ultramicrochemical process, KAIST

(SeungBinPark@kaist.ac.kr*)

The nanoporous $Fe-Si_xAl_{1-x}O_y$ particles were synthesized using ultrasonic spray method and characterized by XRD, TEM, SEM and TGA. The synthesized particles were found to be spherical and poly-disperse with an average size of 1 µm and had a high thermal stability at high temperature.

The catalytic performance of samples was evaluated by hydrogen generation using water splitting. Fe²⁺ in the Si_xAl_{1-x}O_y particles was produced by releasing oxygen molecules in the first step. And then Fe²⁺ in the Si_xAl_{1-x}O_y particles generated hydrogen by steam splitting to reproduce Fe₃O₄ in the second step. Finally, the regenerated Fe₃O₄ was sent back to the first step. To prevent sintering and consequently loss in activity, the Si_xAl_{1-x}O_y was used as a thermal stabilizer.

Morphology and catalytic performance of synthesized samples showed no change during repeated four cycling reaction, which showed that $Si_xAl_{1-x}O_v$ was the good stabilizer.