Synthesis and thermal properties of glycidyl azide polymer based polyurethane

<u>귀정수</u>, 이동선, 권정옥¹, 노시태^{2,*} 한양대학교 정밀화학공학과; ¹한양대학교 화학공학과; ²한양대학교 (stnoh@hanyang.ac.kr*)

Energetic thermoplastic elastomers contain polymer chain with highly energetic moiety such as azide ($-N_3$) and nitrate($-NO_3$), which release high energy due to the exothermic scission. These elastomers have been studied and developed as a new generation binder for propellants and explosives. α , ω - hydroxyl telechelic glycidyl azide polymer (GAP), which is one of the energetic binders, can react with isocyanates materials resulting in GAP-based polyurethanes. Thermosetting GAP-based polyurethanes had been researched. But the polyurethanes have some disadvantage that is not able to recycle. Otherwise thermoplastic GAP-based polyurethanes are recyclable. But GAP has secondary –OH groups that have less reactive than H_2O , so the synthesis of GAP based thermoplastic polyurethane required fine controlled condition.

In this study, thermoplastic GAP-based polyurethanes are synthesized and investigated the thermal properties of the GAP-based polyurethanes.