Pyrolysis of Biomass using Nickel Catalysts of Various Compositions for H₂ production

<u>최용근</u>, 제이타, 이준철, 김재형, 박홍선, 손재익, 박대원* 서울산업대학교 에너지환경대학원 (daewon@snut.co.kr*)

Catalytic pyrolysis of biomass using Ni/Al₂O₃, Ni/CeO₂ and Ni/Al₂O₃-CeO₂ catalysts of various compositions prepared by coprecipitation method has been studied to produce H₂-rich product gases. In Ni/Al₂O₃-CeO₂ catalysts, Ni was maintained at the composition of 30wt%, whereas alumina and ceria are changed to 40wt%:60wt%, 50wt%:50wt% and 60wt%:40wt%. The papers used in daily writing purposes were adapted as biomass sample. The furnace temperature was increased to 800°C with heating rate of 10°C/min. and was maintained the temperature at 800°C for various residence time. 30wt%/(50wt%-50wt%) Ni/Al₂O₃-CeO₂ sample had shown the best performance in pyrolysis process. In each catalyst, residence time at final temperature has shown their performances to the best. The volume of H₂-gas has reached its highest value (5.22 ml) in the case of Ni/Al₂O₃-CeO₂ 30wt%/(50wt%-50wt%) catalyst. It is concluded that Ni/CeO₂ catalysts are better in their performances than those of Ni/Al₂O₃ catalysts; whereas in Ni/Al₂O₃-CeO₂ catalysts, catalytic activity changes with change in the composition of alumina and ceria. Similarly, residence time at final temperature dis composition of alumina the pyrolysis process.