두 종류의 상온 순환유동층 상승관에서 감쇄상수 분포

<u>이현석</u>, 박상순¹, 채호정¹, 정순용¹, 이동현* 성균관대학교 화학공학과, ¹한국화학연구원 (dhlee@skku.edu^{*})

Decay constant in Two Cold-bed Circulating Fluidized Bed risers

<u>Hyun Suk Lee</u>, Sang Soon Park¹, Ho Jeong Chae¹, Soon Yong Jeong¹, Dong Hyun Lee* Department of Chemical Engineering, Sungkyunkwan University

¹Alternative Chemicals / Fuel Research Centre, Korea Research Institute of Chemical

Technology

(dhlee@skku.edu^{*})

<u>서 론</u>

기-고 순환유동층은 고속의 기체와 크기가 작은 고체입자간의 긴밀한 접촉을 통하여 대규모의 여러 가지 화학적, 물리적 작업을 수행하는 유동층 기술의 한 분야이다[1]. 최 근에는 기존 기술에 유동층을 접목한 수많은 새로운 공정들이 개발되고 있다. 이 중 순 환유동층은 유동층 내부의 기상 유속을 증가시킴으로써 고체입자들이 riser 내부를 통하 여 격렬하게 상승하도록 하고 riser 상부를 통해 비말동반 된 고체입자들을 cyclone과 같 은 집진장치를 통하여 포집하여, 다시 층 내로 재 주입되는 장치로서 기체-고체간의 혼합 및 접촉 효과가 우수하여 FCC 공정, coal combustion, MTO(Methanol to Olefin) 공정과 같 은 다양한 촉매반응에 이용된다[2]

본 연구에서는 비기계적 밸브의 한 종류인 seal-pot이 채택된 내경이 0.009m 이고 높 이가 1.9m인 순환유동층과 내경이 0.0254m이고 높이가 4m 인 순환유동층을 이용하여 실험변수에 따른 상승관에서의 고체체류량 분포 및 감쇄상수를 파악하고 기존 문헌과 비 교하였다.

(2)

<u>이 론</u>

1. 상승관 내 수력학적 특성

상승관 내 축방향 고체체류량 분포는 상승관 높이에 따 른 차압을 측정하여 식(1)을 이용하여 계산할 수 있다. 순 환유동층에서 상승관 내 고체체류량 분포는 일반적으로 Fig. 1과 같은 형태를 나타내며, 높이에 따라 측정된 상승관 내 고체체류량 값을 식(2,3)을 이용하여 감쇄상 수(decay constant)를 파악할 수 있다[3].

$$-\frac{\Delta P}{\Delta Z} = \rho_s \epsilon_s g \tag{1}$$

$$\overline{\epsilon_s} = \frac{1}{Z_f} \int_0^{Z_f} \epsilon_s dZ$$

$$\overline{\epsilon_s} = \epsilon_s^* + \frac{\epsilon_{sd} - \epsilon_{se}}{\alpha Z_f}$$

(3) Fig. 1. Axial solid holdup profile in a riser[3].

화학공학의 이론과 응용 제15권 제2호 2009년

2. 상승관 내의 고체체류시간 분포

순환유동층 장치에서의 평균 고체체류시간 분포는 입자의 밀도와 실험변수에 따른 수력학적 특성결과값을 변수로 하며, 식(2)에서 결정된 평균 고체체류량을 식(4)에 대입하여 다음과 같 이 나타낼 수 있다[4].

$$\overline{t_{res}} = \frac{\epsilon_s \times \rho_p \times \Delta Z}{G_s} = \frac{\Delta P}{G_s \times g}$$
(4)

실 험

Fig. 2는 본 실험에 사용된 순환유동층 장치를 개략적 으로 나타낸 그림이다. 두 개의 순환유동층 모두 고체입 자의 흐름을 관찰하기 위하여 아크릴로 제작되었다. riser 의 내경은 0.009m, 0.0254m이고 높이는 1.9m, 4m로 각각 구성 되어 있다. 실험에 사용된 고체 입자는 FCC (Fluid Cracking Catalyst) 입자가 사용되었으며, Table 1에 사용된 고체입자의 물리적 성질을 나타내었다. 본 실험에 사용된 유동화 기체는 air를 사용하였으며 장치 순환에서 발생하 는 정전기를 방지하기 위해 장치 전체에 접지를 실시하 였다. 본 연구에 사용된 분산판은 pore사이즈가 40µm, 두 께 3mm인 sintered plate를 사용하였으며, 이를 통해 riser, seal-pot, bubbling bed에 유동화 기체가 균일하게 공급될 수 있도록 하였다. Bubbling bed에 고체입자를 넣고 air에 의해 유동화 된 촉매입자는 seal-pot과 riser를 거쳐 비말 동반되어 cyclone을 통해 포집된 후, 다시 bubbling bed와 seal-pot을 거쳐 riser로 재순환하게 된다. 상승관에서의 압력을 측정하기 위하여 압력탭이 설치되었으며, 입자의 방지하기 위해 필터가 설치되었다. 그리고 유출을

Fig. 2. Schematic diagram of cold-bed circulating fluidized bed.

pressure transmitter와 A/D converter를 이용하여 1분에 60개의 데이터를 총 3분간 컴퓨터를 통해 받아 통계적으로 처리하였다. 그리고 cyclone과 bubbling bed 사이에 설치된 ball valve를 이용하여 순환유동층이 정상상태로 조업될 때 밸브를 닫고 column에 채워진 입자 량을 측정하여 고체순환량을 결정하였다. Table 2 에는 본 실험에 사용된 실험변수와 범 위를 나타내었다.

Table	1.	Physical	properties	of	inert	particle
-------	----	----------	------------	----	-------	----------

Bed	$\frac{1}{d}$	0	II [m/a]	LI [m/a]	Geldart	
materials	a_p ,[µm]	P_s , [kg/m ³]	U _{mf} , [III/S]	U_t , [III/S]	classification	
FCC	52.8	1995 7	0.0026	0.18	A	
	82.4		0.0050	0.28		
	89.9	1883./	0.0066	0.47		
	140.7		0.0111	0.86		

Table 2. Experimental variables and ranges.

	U _r , [m/s]	U_{seal}/U_{mf} , [-]	Inventory, [kg]
(a) 0.009m-ID x 1.9m CFB	2.18~3.50	2.44~7.09	0.2
(b) 0.0254m-ID x 4m CFB	2.45~3.12	1.96~8.38	4

결과 및 토론

Fig. 3은 실험변수에 따른 상승관 내 고체체 류량 분포 및 기존 결과와의 비교를 나타낸 그 래프이다. 그림에서 볼 수 있듯이 일정한 상승 관 유속에서 고체순환량이 증가할수록 상승관 내 고체체류량은 증가하는 경향을 나타냈으며, 두 장치 모두 exponential decay 형태를 나타냈 다. 이러한 결과는 내경이 0.152m이고 높이가 9.3m 장치를 이용한 Brereton[3]의 결과와 유사 한 형태를 나타냈다.

Fig. 4는 기체유속과 고체순환량에 따른 상승 관 내 평균 고체체류시간을 나타낸 그래프이다. 그림에서 볼 수 있듯이, 상승관 내경이0.009m, 0.0254m에서 각각 얻은 평균 고체체류시간은 3.5~6, 4~8sec인 결과를 얻었다. Smolders and Baevens[10]은 고체순환량의 증가로 인하여 상 승하는 고체입자의 back-mixing은 증가하며 이 것은 평균고체체류시간의 증가를 가져온다고 보고하였다. Smolders and Baeyens[4]의 결과를 보면 고체순환량이 증가함에 따라 평균고체체 류시간은 감소하였지만, 일정기체유속에서 고체 순환량의 증가로 말미암아 고체체류시간은 증 가하였다. 하지만, 본 결과는 이와 다른 경향을 나타냈다. 본 장치의 내경은 0.009m, 0.0254m로 Smolder and Baeyens[4]의 장치 내경(0.1m)에 비 해 매우 작기 때문에 고체입자의 back-mixing이 일어나지 않아 일정기체유속에서 상승관 내 평 균 고체체류시간이 감소 한 것으로 보인다.

Fig. 5는 상승관 입/출구에 측정된 고체체류량 값을 이용하여 Kunii and Levenspiel[3] 모델[식 (2~3)]을 적용하여 계산된 감쇄상수를 나타낸 그래프이다. Table 3은 그림5의 연구자들의 실 험변수범위를 나타내었다. 그림에서 볼 수 있듯 이, 내경이 0.009m, 0.0254m에서의 감쇄상수의 상수는 각각 aU_=4~7, 2~4에 속함을 확인할 수 있다. Kunni and Levenspiel[3]은 Geldart A 인 입자의 감쇄상수는 2~4의 범위를 나타낸다고 보고하였으며, 기존 문헌의 결과를 보면 2~4의 범위에 속함을 알 수 있었다. 두 장치 모두 Geldart A 입자를 사용하였지만, 내경이 0.009m 인 장치의 경우에는 감쇄상수의 범위가 큰 결 과를 얻었다. 그 이유는 상승관의 내경이 작아 질수록 상승하는 입자의 agglomerate가 상승관 벽으로 부딪히기 쉽고, 이러한 입자들은 기체의 흐름을 벗어나기 때문에[3] 증가한 것으로 보인 다. 또한 내경이 0.0254m인 장치의 경우는 내경

Fig. 3. Variation of the axial solid hold-up profile in risers with experimental variables in comparison with the previous result.

Fig. 4. Effect of the G_s on t_{res} in a riser in comparison with the data reported by Smolder and Baeyens[4].

Fig. 5. Calculated decay factor using the Kunii and Levenspiel model[3] in this study in comparison with previous results.

화학공학의 이론과 응용 제15권 제2호 2009년

이 0.009m인 장치에 비해 내경이 약 3배가 크기 때문에, 입자의 agglomerate가 상승관 벽 으로 부딪힐 확률이 내경이 0.009m장치보다 작다. 따라서 이러한 영향으로 인해 감쇄상 수가 작아진 것으로 판단된다. 또한 입자의 크기가 증가할수록 감쇄상수가 증가한다는 보고가 있다[3]. 하지만, 본 결과에서는 53에서 90µm의 입자에서는 문헌에서의 결과와 같 이 증가하지만, 140µm에서는 감쇄상수가 감소하는 결과를 얻었다. 감쇄상수는 기체유속, 고체순환량 그리고 이에 따른 평균고체체류시간의 변수이며, 본 결과에서는 140µm입자의 고체순환량이 작기 때문에 이로 인해 평균 고체체류량은 감소하며, 이러한 상관관계로 인해 감쇄상수가 작아진 것으로 판단된다.

결 론

본 연구에서는 내경이 0.009m 이고 높이가 1.9m인 순환유동층과 내경이 0.0254m이 고 높이가 4m 인 순환유동층을 이용하여 실험변수에 따른 상승관 내 고체체류량분포, 평 균고체체류시간 그리고 이러한 변수들을 통해 계산된 감쇄상수(decay constant)를 파악하 고, 기존 문헌의 결과와 비교하였다. 실험변수에 따라 측정된 상승관 내 고체체류량 분포 는 simple exponential decay 형태를 나타냈다. 또한 측정된 고체체류량을 이용하여 상승관 내 평균 고체체류시간을 파악하였으며, 내경이 0.009m, 0.0254m인 장치의 경우 각각 3.5~6, 4~8sec인 결과를 얻었다. 이러한 결과값을 토대로 Kunii and Levenspiel 모델을 적용 하여 계산된 감쇄상수(decay constant)는 내경이 0.009m, 0.0254m인 장치에서 각각 4~7, 2~4m⁻¹인 결과를 얻었다.

Symbol		d_t (m)	Solid type	d_p (μm)	$U_r (m/s)$	$G_s (kg/m^2s)$
0	This work 0.009m-ID x 1.9m-high CFB	0.009	FCC	82	2.18~3.50	24.3~51.2
*	Arena et al. [5]	0.041 0.12	FCC/glass	70	2.5~5	49, 120
+	Kato et al. [6]	0.066 0.097	FCC	61	2~4.4	48~50
8	Takeuchi et al. [7]	0.1	FCC	61	1.7~2.9	8.3~79
Ŷ	Li and Kwauk [8]	0.09	FCC/Alumin a	54,58/58	0.8~2.1 / 2.2~4	73

Table. 3. Experimental conditions for data of Fig. 5.

참고문헌

- 1. Ahn, G. R. and Han, G. Y, HWAHAK KONGHAK, 34, 735 (1996).
- 2. Cho, Y. J, Journal of Korea Society of Environmental Administration, 12(1), 53 (2006).
- 3. Kunii, D. and Levenspiel, O. Fluidization Engineering, Butter-worth-Heinemann (1991).
- 4. Smolders, K. and Baeyens, J. Chemical Engineering Science, 55, 4101~4116, (2000).
- 5. Arena, U., Cammarota, A. and Piston, L., in circulating fluidized bed technology, P. Basu, ed., p. 119, Pergamon, New York, (1986).
- 6. Kato et al. paper delivered at Soc. Chem. Eng. Japan annual meeting, April (1987).
- 7. Takeuchi, T., Hirama, T., Chiba, T., Biswas, J. and Leung, L. E., *Powder Technol.*, **47**, 195-199 (1986).
- 8. Li, J. and Kwauk, M. Eds. by Grace, J. R. and Masten, J. M. Plenum Press, New York, 537-544 (1980).