Experiments and Simulations for the Steam Reforming of Methane over Ni-based Catalyst

이윤주¹, 김소정^{1,2}, 손용택³, 이상득¹, 홍석인⁴, 문동주^{1,2,*}
¹KIST; ²UST; ³성균관대학교; ⁴고려대학교
(dimoon@kist.re.kr*)

Methane steam reforming (MSR) is a major route for the industrial production of H_2 . In this work, steam reforming of methane over Ni-based catalyst was carried out for applications in fuel processor system. The Ni-based catalyst was prepared by co-precipitation and dipping methods and characterized by N_2 physisorption, CO-chemisorption, XRD, SEM, TEM and TPR. The product gas compositions for MSR were calculated thermodynamically as a function of temperature based on the principle of Gibb's free energy minimization. The steam reforming of methane in a catalytic reactor has been simulated by computational fluid dynamics (CFD).