Ester Hydrogenolysis over Cu/ZnO/Al₂O₃ catalysts: Effect of Cu/ZnO ratio

주인범, 서동진, 이창하¹, 안인영, 윤영식², 서영웅*한국과학기술연구원; ¹연세대학교; ²SK (vwsuh@kist.re.kr*)

Hydrogenolysis of ester was studied over $\text{Cu/ZnO/Al}_2\text{O}_3$ catalysts. The kinetic data were measured by changing H_2 partial pressure, ester partial pressure, and reaction temperature on the basis of the empirical power-law equation. $\text{Cu/ZnO/Al}_2\text{O}_3$ catalysts were prepared by a coprecipitation technique, where the Cu/Zn ratio and the support were changed. The catalysts were characterized using XRD, H_2 -TPD, O_2 -TPD, and N_2O chemisorption. Among the supports tested in this study, Al_2O_3 exhibited the highest ester yield. Furthermore, it was found that the $\text{Cu/ZnO/Al}_2\text{O}_3$ catalyst with the Cu/Zn ratio of 5/1 showed the highest activity in ester hydrogenolysis due to the largest surface area of active Cu species (The authors would like to acknowlege funding from the SK Energy Corporation).