Solar Water Splitting using Powdered Photocatalysts

<u>Akihiko Kudo</u>* Department of Applied Chemistry, Tokyo University of Science (a-kudo@rs.kagu.tus.ac.jp*)

In the present paper, we introduce various photocatalyst materials aiming at water splitting [1]. A NiO (0.2wt%)/NaTaO₃:La (2%) photocatalyst showed high activity for water splitting into H₂ and O₂. Many visible–light–driven photocatalysts have also been developed through band engineering by doping of metal cations, new valence formation, and by making solid solution. BiVO₄, AgNbO₃, and TiO₂ co–doped with Rh and Sb photocatalysts showed high activities for O₂ evolution in the presence of sacrificial reagent (Ag⁺) under visible light irradiation. Pt/SrTiO₃ doped with Rh showed high activity for H₂ evolution from aqueous solutions containing a reducing reagent. Overall water splitting under visible light irradiation has been achieved by construction of a Z-scheme photocatalysis system employing the visible–light–driven photocatalysts, Ru/SrTiO₃:Rh for H₂ evolution and BiVO₄ for O₂ evolution, and an Fe³⁺ / Fe²⁺ redox couple as an electron relay. On the other hand, AgInS₂–CuInS₂–ZnS solid solution photocatalysts showed high activity for H₂ evolution from aqueous solutions including sulfur compounds as electron donors even under simulated solar light irradiation (AM-1.5).

References: [1] A. Kudo and Y. Miseki, Chem. Soc. Rev., 38 [1], 253–278 (2009).