One-step Synthesis of Polystyrene/Polythiophene Core/Shell Nanoparticles via Dual Initiation System

<u>이승모</u>, 이선종¹, 정인우², 김중현^{*} 연세대학교; ¹동진세미켐; ²경북대학교 (jayhkim@yonsei.ac.kr^{*})

Polystyrene-polythiophene (PSt-PTh) core-shell nanoparticles were synthesized via surfactant-free emulsion polymerization with oxidative initiation. As a couple agents, hydrogen peroxide (H_2O_2) and ferric chloride (FeCl₃) were used to carry out dual initiation system. The average particle size of the particle was approximately 300 nm and its core-shell morphology was proved by backscattered SEM imaging. We proposed a growth mechanism for the formation of the core-shell PSt-PTh particles based on the time-evolution morphology of the particle with SEM images. The result was also corroborated by the time-evolution in situ FT-IR and ξ -potential data. The optical property of core-shell particles was analyzes by photoluminescence spectroscopy.