Removal of Dimethyl Sulfide on Activated Carbons Impregnated with Transition Metals

<u>Ho Hoang Phuoc</u>¹, 김우형¹, 이소연¹, 허광선², 이석희¹, 이도형^{1,3}, 우희철^{1,*} ¹부경대학교; ²경남정보대학; ³수송기계 안전편의 융합부품소재 인재양성센터 (woohc@pknu.ac.kr*)

The adsorption capacity of activated carbon for the natural gas contaminant dimethyl sulfide (DMS) was improved by impregnating it with a transition metal to influence surface modification. The adsorption features of DMS on modified activated carbons were investigated by using a dynamic adsorption method in a fixed-bed. The impregnation of transition metal on the activated carbon significantly improved the adsorption capacity of DMS. Among several samples, copper-impregnated activated carbon showed the highest DMS capacity. Moreover, the effects of copper loading on the DMS adsorption capacity were also considered.

Acknowledgement

Following are the results of a study on the "Human Resource Development Center for Economic Region Leading Industry" project, supported by the Ministry of Education Science & Technology (MEST) and the National Research Foundation of Korea (NRF).