Studies on the Steam CO₂ Reforming of Methane over Modified Hydrotalcite based Catalysts

<u>김나영</u>¹, 박미경¹, 김승훈^{1,2}, 양은혁^{1,3}, 이윤주¹, 김현진^{4,1}, 문동주^{1,3,*} ¹KIST; ²고려대학교; ³UST; ⁴DSME (djmoon@kist.re.kr*)

The reforming process is commonly used in the industry for the production of synthesis gas and H₂. Especially steam carbon dioxide reforming(SCR) of methane is good for adjusting proper H₂/CO ratio of 2 to apply GTL process. In SCR reaction, Ni-based catalysts are usually used because of their acceptably high activity and significantly lower cost in comparison with alternative precious metal-based catalyst. However nickel based catalysts are susceptible to deactivation from the deposition of carbon. In Hydrotalcite-like Sr^{2+} , this study, catalysts promoted with Ca²⁺ and Ce²⁺ were investigated to control the carbon formation. The catalysts were prepared by co-precipitation method and characterized by various analyzer such as N_2 physorption, TPR, TPD, XRD, TGA and SEM/EDX techniques. The catalytic performance for SCR was investigated in a fixed-bed reactor with molar ratio of $CH_4:CO_2:H_2O=1:1:2$, reaction temperature of 700 °C and reaction pressure of 1 bar. It was found that the Ca_{0.5}Ni₁/MgAl catalyst has a moderate basic site and shows higher conversions both CH₄ and CO₂, and resistance to carbon deposition than the other catalysts.