K_2CO_3 가 함침된 Hydrotalcite 흡착제를 이용한 CO_2 순환 흡착 공정 성능 비교

<u>조현근</u>, 이기봉*, 장희진, 이찬현, 홍석민 고려대학교 (kibonglee@korea.ac.kr*)

산업혁명 이후 인간의 화석에너지 사용량이 급격히 증가하면서 온실가스 배출량 또한 큰 폭 으로 증가해왔다. 이러한 온실가스 배출량의 증가는 지구온난화 현상의 주범으로 지목되고 있으며, 지구온난화 현상은 해수면 상승, 이상기후 발생 등을 야기하여 인류의 생존과 번영 에 위협 요소로 인식되고 있다. 이에 온실가스 배출량의 80%를 차지하고 있는 이산화탄소 (CO₂) 배출량을 저감하는 기술이 다방면으로 연구되고 있다. 그 중 흡착에 의한 CO₂ 포집 기 술은 에너지 소모가 적고, 흡착제의 재생이 용이해 저비용 기술로써 각광받고 있다. 특히 발 전소에서 발생하는 배가스는 CO₂ 발생량의 상당 부분을 차지하는데, 배가스 내 CO₂포집 방 법으로 흡착과 탈착이 연속적으로 이루어지는 순환 흡착 공정이 적용될 수 있다. 이번 연구 에서는 고온의 CO₂ 흡착제인 K₂CO₃가 함침된 hydrotalcite를 이용하여 CO₂ 순환 흡착 공정 을 전산 모사하였고, 압력 순환 흡착 공정과 온도 순환 흡착 공정의 성능을 비교하였다. 또한, 순환 흡착 공정의 성능을 결정하는 영향 인자들을 확인하였다.