The influence of anti-solvent on hot carbonate process for crystallization -based CO2 capture

____, , 1, KAIST; ¹KIER (kjd@kaist.ac.kr*)

Although CO_2 capture process recieved much attentions for recent years, the high energy demand of CO_2 capture process makes its application for practical industries difficult. For energy-saving crystallization -based CO_2 capture, using not only cooling crystallization method, but also drowning out crystallization is favourable. Therefore, in this work, the availability of drowning out crystallization method was investigated. When adding anti-solvent into the potassium carbonate/bicarbonate solution, salt formation, which is related to crystallization yield was observed. The yield by anti-solvent was increased about 15%. When adding anti-solvent, liquid-liquid-solid phase separation was also observed. The anti-solvent rich phase was immediately separated from the potassium bicarbonate/carbonate solution. The Liquid-liquid separation was important because it is related to easy recycle of anti-solvent in the process. Therefore, the drowning out crystallization method with organic anti-solvent can be applied in the crystallization -based CO_2 capture process using potassium carbonate/bicarbonate solution.