Mesoporous silica -coated luminescent Eu³⁺ doped GdVO₄ nanoparticles for multimodal imaging and drug delivery

We describe a simple route for synthesizing mesoporous silica-coated luminescent europium-doped gadolinium vanadate (GdVO₄:Eu³⁺@mSiO₂) nanoparticles. Their biomedical applications as a potential imaging nanoprobe for both fluorescence imaging and magnetic resonance imaging (MRI) and as a simultaneous anti-cancer drug delivery vehicle are also discussed. Eu³⁺ doped GdVO₄ nanoparticles exhibit strong red photoluminescence and the Gd³⁺ in GdVO₄ can be used as a T_1 contrast agent for MRI. The mesoporous silica layer on the nanoparticles enables the simultaneous capabilities of T_1 -weighted MR contrast enhancement and sustained intracellular drug delivery. GdVO₄:Eu³⁺@mSiO₂ nanoparticles can provide new opportunities in cancer treatment as a new type of theragnostic (imaging and treatment) agents.