Adsorption study of CO2 on Li4SiO4 nanoparticle via reactive molecular dynamics

<u>전우철</u>, 정관영, 신은혜, 곽상규[†] 울산과학기술대학교 (skkwak@unist.ac.kr[†])

 $\rm CO_2$ emission has been severe environmental issue for several decades due to global warming, and recently lithium silicates have been considered as a promising adsorbent for $\rm CO_2$ capture. In this study, we investigated $\rm CO_2$ adsorption mechanism on Li₄SiO₄ at high temperatures (500~650 °C) using reactive molecular dynamics simulation (i.e. using ReaxFF). First, we developed ReaxFF parameters compatible for bulk and surface systems of Li₄SiO₄, Li₂SiO₃, Li₂CO₃ and optimized the parameters comparing with quantum mechanics (QM) results. With the optimized parameters, we checked phase transition of Li₄SiO₄, Li₂SiO₃ and Li₂CO₃ surface depending on temperature. Second, we observed CO₂ adsorption on Li₄SiO₄ thin layer at different temperatures. In these reactions, we predict thin bilayer and double shell formation on Li₄SiO₄ surface after CO2 adsorption. In addition, multilayer system (Li₄SiO₄-Li₂SiO₃-Li₂CO₃) was modeled to observe the diffusion of Li⁺ and O²⁻ ions after thin bilayer formation. The thermal conductivity was estimated by analyzing the temperature profile. Finally, in order to investigate the overall reaction mechanism, we performed time-dependent CO₂ adsorption simulation of Li₄SiO₄ spherical nanoparticle.