Thermodynamic and structural characteristics of the N_2 + CHF $_3$ and N_2 + C_2 F $_6$ gas hydrates for hydrate-based F-gas separation

<u>김은애</u>, 진영근¹, 서용원[†] 울산과학기술대학교; ¹극지연구소 (ywseo@unist.ac.kr[†])

The emission of CHF $_3$ and C $_2$ F $_6$ to the atmosphere should be reduced in order to mitigate the accelerating global warming effect. To examine the feasibility of the gas hydrate-based F-gas capture, the N $_2$ + CHF $_3$ and N $_2$ + C $_2$ F $_6$ gas hydrates were investigated with a primary focus on macroscopic thermodynamic conditions, microscopic structural analyses, and gas separation efficiency. The H-L $_w$ -V equilibrium lines of both N $_2$ + CHF $_3$ and N $_2$ + C $_2$ F $_6$ hydrates were shifted to thermodynamically more stable region as the concentrations of F-gases increased when compared to pure N $_2$ hydrate. The N $_2$ + CHF $_3$ hydrates were revealed to be sI hydrates, whereas the N $_2$ + C $_2$ F $_6$ hydrates were found to be sII hydrates through powder X-ray diffraction. Also, the formation process of both N $_2$ + CHF $_3$ and N $_2$ + C $_2$ F $_6$ hydrates was monitored using in-situ Raman spectroscopy. Lastly, the efficiency of gas separation was examined through gas chromatography by measuring gas compositions of both vapor and hydrate phases after the completion of hydrate formation.