Development of start-up strategy for Microbial Electrosynthesis using potential control

<u>김중래</u>[†], 임채호, Ganapathiraman Munussami, 전병훈¹ 부산대학교; ¹한양대학교 (j.kim@pusan.ac.kr[†])

Electrochemically active microorganism is bio-catalyst for useful chemical and biofuel production from CO_2 in bioelectrochemical system. Acetate is primary product of microbial electrosynthesis and further conversion into important intermediate chemicals. To start-up CO_2 reduction catalyzed by microbe, electro-active biofilm should be developed on electrode. In this study, we investigate effect of start-up potential for autotrophic electrosynthesis with three different conditions. Electrosynthesis for acetate production was confirmed through long-term operation. CO_2 was sole carbon source to produce acetate and other organic acids. This study provide a strategy to facilitate establishment of biofilm on biocathode and information for further application to produce useful chemical and biofuels in electrosynthetic pathway.