Active bimetallic compound of iron and cobalt metal inside functionalized CNT for ${\rm CO}_2$ Hydrogenation

<u>최요한</u>, 이재성^{1,†} POSTECH; ¹UNIST (ilee1234@unist.ac.kr[†])

Global warming and energy problem comes from fossil fuel have accelerated diverse energy research, reforming, CO_2 hydrogenation and F-T reaction (fischer-tropsch) to produce liquid product or light hydrocarbon. CO_2 hydrogenation consists of RWGS (reverse water gas shift) and F-T reaction. 3mol of H2 and 1mol of CO_2 are reacted with each other in proper reaction condition.

In this work, we present cobalt, indicating any RWGS activity, and iron catalyst showed improved CO_2 conversion and light hydrocarbon selectivity ($\mathrm{C}_2\mathrm{-C}_4$) compared to bare iron catalyst. Especially, by adding 1 percent of cobalt, iron loaded on inside of CNT has upper properties. Cobalt metal acted as promoter to help iron reduced and CO_2 adsorption. Furthermore, to convert selectivity into higher hydrocarbon, potassium loaded on functionalized CNT with modified impregnation methods.