Long-Range Coupling of Paramagnetic Guest Molecules via Ion-Doped Water Framework

<u>신규철</u>, 차민준¹, 이원희², 서유택³, 이 흔^{3,†} 경북대학교; ¹강원대학교; ²Colorado School of Mines; ³한국과학기술원 (hlee@kaist.ac.kr[†])

The superexchange-like long-range coupling between molecular oxygen guests encaged in an ion-doped water framework was calculated by molecular calculations and demonstrated by the measurement of magnetization of guest molecules. In this work, abnormal proton positioning of an ion-doped water framework in the presence of paramagnetic oxygen molecules and the distortions of the water-water connection caused by orbital mixing between a paramagnetic guest and an ion-doped cage were demonstrated by a synchrotron high-resolution powder diffraction pattern refinement. The identified crystal structures of ionic oxygen clathrate hydrate well explain the superexchange-like long-range interactions occurring in ionic clathrate hydrates with paramagnetic guests.