Effective CO₂ absorption-stripping process in membrane contactors for CH₄/CO₂ separation

<u>김성중</u>^{1,2}, 이평수¹, 박아름이¹, 남승은¹, 박호식¹, 박유인^{1,†} ¹한국화학연구원; ²과학기술연합대학원대학교 (yipark@krict.re.kr[†])

Porous polypropylene (PP) hollow fiber membrane contactors have been investigated for production of biomethane from simulated biogas and operated by combined absorption/desorption processes using water. To confirm the effect of operating parameters, the connection of modules, flow rates, and operating pressures were observed. For CO_2/CH_4 separation, results in single absorption processes showed a good yield (85%) of high purity CH_4 (97%). The series connection in two absorption modules facilitated CO_2 absorption because of an increase in contact area at the liquid–gas interface. In two 1" absorption modules and four 2" desorption modules connected in series, CH_4 was recovered in 75% yield and 98% purity. Even though the result in single absorption performance, the combined process proved the potential of membrane contactor to produce renewable methane as a fuel for vehicles (methane purity: >95%). The membrane contractor in the combined absorption/desorption processes required periodic maintenance to maintain an acceptable performance, while the single absorption processes was operated continuously.