Ultrafast synthesis of graphene-SnO₂ by microwave for lithium ion batteries

<u>서동훈</u>, 박호석[†] 성균관대학교 (phs0727@skku.edu[†])

Graphite is famous for an anode material in lithium-ion battery. However, the low theoretical capacity (372 mAh g⁻¹) could not be satisfied with the demand of high energy density for electrical vehicles and devices. For this reason, graphene-metal oxide composite can be a solution to increase the capacity. Especially, SnO₂ nanoparticles are a promising anode material for the lithium ion battery. Graphene-SnO₂ (G-SnO₂) can be synthesized by vacuum filtration and microwave. For example, reduced graphene oxide (rGO) and graphene oxide (GO) were uniformly dispersed in 2-propanol. The mixture was stirred with SnCl₂ solution, and then a hydrogel was formed by vacuum filtration. Finally, the hydrogel transformed to the G-SnO₂ through it was exposed to the microwave irradiation for 10min. The capacity of G-SnO₂ showed around 1,000 mAh g⁻¹ in 100 mA g⁻¹ during 100 cycles, and maintained high specific capacity (746.8 mAh g⁻¹) in high current density (300 mA g⁻¹). In addition, properties of G-SnO₂ were analyzed by SEM, TEM, XRD, XPS, TGA and cycle voltammetry.