Cycloaddition between CO2 and Epoxides Using Novel Titanium Catalysts

<u>김혜진,</u> 현경림¹, 김영조^{1,†} 충북대학교; ¹충북대학교 화학과 (ykim@chungbuk.ac.kr[†])

The facile and exclusive synthesis of dimeric titanium (IV) complex with a terminal Ti=O moiety from reaction between novel pyridine-based tridentate ligand(LH2) and Ti(O-i-Pr) 4 under the bubbling of wet air is presented. On the other hand, the same dimeric Ti complex was obtained via wet air bubbling of monomeric LTi(O-i-Pr)2 or addition of the same equiv of H2O into LTi(O-i-Pr)2. All compounds including LH2 and two titanium complexes were characterized by single crystal X-ray analyses. Synthesized terminal oxo-titanium compound is the first example of structurally characterized dimeric terminal oxo-titanium compound with no Ti=O \rightarrow Ti bonds. We will also report two titanium complexes could be used as effective catalysts for the cycloaddition of CO2 to propylene oxide in the presence of various kinds of cocatalysts.

Acknowledgment: 본 연구는 지역혁신창의인력양성사업(2014H1C1A1066874)의 지원을 받 아 수행되었음