Photocatalytic Reduction of CO2 on Bi2O3-Added Cu/TiO2 Particles

Increasing atmospheric carbon dioxide (CO₂) concentration is a concern, as the relatively high heat capacity of carbon dioxide is considered to result in accelerated global warming. Highly efficient photocatalytic conversion of CO₂ demands the design of photocatalysts that offer stronger adhesion to CO₂ and the reaction intermediates. In this study, We report significantly enhanced gas–phase photocatalytic conversion of carbon dioxide to methane on Cu/TiO₂ nanoparticles when Bi_2O_3 is introduced as a promoter in the vicinity of Cu. CH₄ generation rate of 11.90 µmol/gh recorded in the case of Cu–Bi₂O₃/TiO₂ is an order of magnitude higher than the case of Cu/TiO₂. The enhanced catalysis is attributed to facilitated migration of CO* from Cu to Bi_2O_3 surface.