Synthesis of Three-dimensional Core/Shell Structure of MnO₂@Polyaniline/Carbon Fiber Paper for High Performance of Supercapacitor

<u>홍석복</u>, 최봉길[†] 강원대학교 (bgchoi@kangwon.ac.kr[†])

In this work, we developed a straightforward and simple method for preparation of threedimensional core/shell structure of $MnO_2@$ polyaniline(PANI)/carbon fiber paper(CFP) electrodes. MnO_2 nanosheet deposited on carbon fiber paper (CFP) was synthesized using a simple redox reactive reaction, and then PANI was directly deposited on the surface of MnO_2 nanosheet by electrochemical coating method. The $MnO_2@PANI/CFP$ can be applied as a binder- and carbon-free electrode for supercapacitors. The $MnO_2@PANI/CFP$ material is characterized by scanning electron microscopy, transmission electron microscopy, X-ray photoelectron spectroscopy, and X-ray diffraction. Electrochemical performance of the $MnO_2@PANI/CFP$ electrode was studied by cyclic voltammetry, galvanostatic charge/discharge, and electrochemical impedence spectroscopy. The $MnO_2@PANI/CFP$ electrode shows a high specific capacitance of 437

 $F g^{-1}$ at 1A g^{-1} , a good rate capability, and an excellent cycling stability.

Keywords : Nanosheet, Pseudocapacitor, Carbon Fiber Paper, Conductivity, Composite electrode.