Synthesis of glycerol carbonate from glycerol and urea over Zn/Al mixed oxide catalysts supported by activated red mud

Nguyen Phu Huy, 박찬이¹, Kaiming Jiang¹, 신은우^{1,†} 울산대학교; ¹울산대학교 화학공학과 (ewshin@ulsan.ac.kr[†])

The synthesis of glycerol carbonate via the reaction between glycerol and urea was investigated with Zn/Al mixed oxide (MOX_{Zn/Al}) catalysts supported by activated red mud (ARM), an abundant waste material from aluminum production. Zn and Al were impregnated onto ARM by hot wet impregnation with various molar ratios of Zn:Al and various metal weight loadings. A series of MOX_{Zn/Al} catalysts without ARM was also prepared for comparison. The reactions were carried out under vacuum condition (3kPa) at 140°C. Compared to unsupported MOX_{Zn/Al} catalysts, ARM-supported MOX_{Zn/Al} catalysts exhibited higher yields of GC, even at lower MOX_{Zn/Al} loadings. The catalytic performance of ARM-supported MOX_{Zn/Al} catalysts showed a volcano curve for the GC yield as a function of the Zn/Al loading. The maximum GC yield of 59.8% was attained by the 50%-Zn₇Al₃O_x/ARM catalyst, compared to 49.6% for Zn₇Al₃O_x. FTIR analysis revealed the ARM-supported MOXZn/Al catalysts to be more selective to GC, resulting in higher selectivity and GC yield. The balance of the active sites from ARM and MOX_{Zn/Al} is related to the rate of each reaction step in GC synthesis, which eventually influences the selectivity and yield of GC.