Highly selective separation of Pd^{2+} and Pt^{4+} using novel oxathia-crown ethers: Experimental and DFT complexation studies

<u>Khino Parohinog</u>, Grace Nisola, 민상훈¹, 한정우², 이성풍, 정욱진, Torrejos Rey Eliseo[†] Dept. of Energy Science and Technology, 명지대학교; ¹Dept. of Chemical Engineering, 서 울시립대학교;

> ²Dept. of Chemical Engineering, 포항공과대학교 (reytorrejos@gmail.com[†])

Novel oxathia-crown ethers (CE) derivatives were successfully synthesized via cyclization of bis-epoxides with 1,2-benzenedithiol using trimethylamine catalyst and metal template in water. Liquid-liquid extraction (LLE) was performed to evaluate the CE complexations with Pd^{2+} and Pt^{4+} . Among the CEs, 2HDBS214C4 (2i) exhibited the highest Pd^{2+} selectivity even in the presence of other platinum- or precious group metals (Pt^{4+} , Ru^{3+} , Rh^{3+} , Au^{3+}). DFT studies reveal that 2i has the most compatible cavity dimension (\emptyset CE=1.58 Å) with Pd^{2+} (\emptyset Pd^{2+} = 1.56 Å) and the most stable complex based on binding energy calculations. NMR analysis demonstrates that S heteroatoms of 2i participated in 1:1 CE-Pd^{2+} coordination. The results demonstrate its applicability as selective extractant for the separation of Pd^{2+} and Pt^{4+} in secondary automobile catalyst waste. This work was supported by NRF funded by the Korea government funded by the Ministry of Science and ICT (2017R1D1A1B03028102 and 2017R1A2B2002109) and Ministry of Education(2009-0093816 and 22A20130012051(BK21Plus)).