χN dependence of Composition Fluctuation Inhomogeneity on Transition Behavior of Diblock Copolymers

<u>전태석</u>, 이용훈, 조성준, 류창열¹, 류두열[†] 연세대학교; ¹Rensselaer Polytechnic Institute Troy (dyryu@yonsei.ac.kr[†])

We propose that the thermodynamic segregation power of χN at the order-to-disorder transition $((\chi N)_{ODT})$ is a key parameter on block copolymer (BCP) to influence the composition fluctuation inhomogeneity at ODT, where χ is the Flory-Huggins interaction parameter between two blocks and N is the overall degree of polymerization. For this purpose, a series of symmetric BCPs of polystyrene-*b*-poly(2-vinlyprydine) (PS-*b*-P2VP), PS-*b*-poly(methyl methacrylate) (PS-*b*-PMMA), and PS-*b*-poly(*n*-hexyl methacrylate) (PS-*b*-P*n*HMA) with modest molecular weights were prepared to represent the decreasing (χN_{ODT} order of ($\chi N_{PS-b-P2VP} > (\chi N_{PS-b-PMMA} > (\chi N_{PS-b-PnHMA})$. The differential scanning calorimeter (DSC) and small angle x-ray scattering (SAXS) were used to support that the discontinuous changes in local composition profiles at ODTs become more distinct when the fluctuation-induced (χN_{ODT} of BCPs decreases.