<u>우홍안</u>¹, Nguyen Phu Huy^{2,†}, Youg Men^{3,4}, 신은우² ¹울산대학교; ²울산대학교 화학공학부; ³Shanghai University of Engineering and Science; ⁴College of Chemistry and Chemical Engineering (huycanphu@gmail.com[†])

La2O2CO3/ZnO composite materials have been used as a catalyst for CO2-involving chemical reactions and La2O2CO3 phases are an important factor to influence on catalyst performance. In this study, we prepared La2O2CO3/ZnO composite materials by two different methods - precipitation (PLZ) and ethylene glycol combustion (ELZ) - as functions of La/Zn ratios and calcination temperatures to investigate the formation of La₂O₂CO₃ phase in the composite materials. The calcination temperature was not an crucial variable to control the La2O2CO3 phase. However, in both series of the composite materials, the La₂O₂CO₃ phase was changed depending on the La/Zn ratio. Consequently, the increase in the La/Zn ratio of the composite materials induced the crystallinity of La2O2CO3 phase and the formation of hexagonal phase was preferred under the high crystalline $La_2O_2CO_3$ structure. The CO_2 release from the structure occurred at the higher temperatures than that from the hexagonal monoclinic phase, which prove that the hexagonal phase was more stable than the monoclinic.