Exploration of H₂O₂ Scission Kinetics on S-Modified Group IV Metals Utilized to Degrade Refractory Pollutants

<u>최윤정</u>^{1,2}, 김상훈¹, 김종식^{1,†}

¹KIST; ²서울대학교

(jkim40@kist.re.kr[†])

'OH is regarded as one of powerful oxidants utilized to decompose recalcitrant. 'OH can be produced via catalytic H_2O_2 cleavage on S-modified Fe^{δ^+} species ($\delta \leq 2$) inherent to iron sulfides. The resulting 'OH species produced, yet, are found insufficient to fully oxidize the recalcitrants because of the limited 'OH productivity and chemical susceptibility Fe^{δ^+} species can impart. To locate S-modified metal species (M^{δ^+} , M metal) that can outperform the Fe^{δ^+} counterparts with regards to H_2O_2 scission coupled with chemical sturdiness, here we synthesize five Group IV metal sulfides, whose geometries (hexagonal) and chemical formula (MS) are identical one another. N^{δ^+} species are identified to provide the greatest H_2O_2 scission rate and phenol consumption rate among the M^{δ^+} species studied and therefore are located in the middle of the volcano-shaped curve plotting $-r_{H2O2, 0}$ (or $-r_{PHENOL, 0}$) versus M^{δ^+} . Electric potential-assisted control runs corroborate that 'OH desorption is the rate-determining step and that the N^{δ^+} species are most appropriate to release 'OH species, while minimizing the leaching issue among all M^{δ^+} species examined.