Simple Salt-Templating Approach to Design Porous Molybdenum Carbide as a Promising Anode Material for Secondary Ion Batteries

Albertina Ingrid, Winda Devina¹, 김재훈^{1,†} Sungkyunkwan University (Suwon Campus); ¹Sungkyunkwan University (jaehoonkim@skku.edu[†])

Molybdenum carbide (Mo₂C) has gained a great interest as an advanced anode material for secondary ion batteries owing to its low cost, high chemical stability, and high conductivity. However, the electrochemical performance of bulk Mo₂C is still inferior compared to the commercial graphite. Herein, to maximize the electrochemical performance of Mo₂C, we demonstrate a simple route to fabricate porous Mo₂C by using crystal NaCl as porous template. The resultant porous Mo₂C has high surface area (177.28 m² g⁻¹) as compared to that of bulk Mo₂C (1.06 m² g⁻¹). The porous structure and 3D interconnected configuration of Mo₂C offer larger active sites and shortened ions diffusion pathways to the electrode/electrolyte when the materials are used as anode materials for Li/Na/K ion batteries. Porous Mo₂C can deliver a reversible discharge capacity of 560 mAh g⁻¹ at 50 mA g⁻¹ for LIBs, 160 mAh g⁻¹ at 25 mA g⁻¹ for SIBs, and 200 mAh g⁻¹ at 20 mA g⁻¹ for KIBs. The porous Mo₂C exhibits excellent stability, revealing superior electrochemical activity compared to the bulk Mo₂C.