Design of Active and Selective CO₂ Reduction Electrocatalysts

<u>이진우</u>[†] 카이스트 (jwlee1@kaist.ac.kr[†])

Although a copper catalyst has very interesting properties in CO_2 electroreduction reaction, the high overpotential of this reaction and low selectivity of the catalyst for a single porduct are major hindrances to catalyst immobilization. In this work, monodisperse $\mathrm{Cu}\text{-Pd}$ nanoparticles (NPs) with various compositions were synthesized using the colloidal method. These Np show a totally different catalytic performance than bulk Cu catalysts. Alloying Cu with Pd suppressed hydrocarbon production on the alloy NP catalyst surface, NPs with a 1:1 $\mathrm{Cu}\text{-Pd}$ ratio showed the best catalytic activity for the conversion of CO_2 to CO_2 .