The effect of $g-C_3N_4$ precursors on photocatalytic activity enhancement of water-dispersible porous $g-C_3N_4$ photocatalysts

Lien Do-Thi, 웬티킴안, Thanh-Truc Pham, 정해원, 신은우[†] 울산대학교 (ewshin@ulsan.ac.kr[†])

In this study, water-dispersible porous $g-C_3N_4$ photocatalysts were prepared from bulk $g-C_3N_4$ by a chemical oxidation method and their photocatalytic activity was examined under visible-light irradiation. Bulk $g-C_3N_4$ was obtained from different C and N rich precursors such as dicyandiamide, melamine, urea, and thiourea in a muffle furnace at 550°C for 4 hours under air condition. Properties of bulk and porous $g-C_3N_4$ materials were characterized by FE-SEM, XRD, FT-IR, BET and UV-vis absorption. Porous $g-C_3N_4$ photocatalysts showed a higher photocatalytic degradation rate of methylene blue than bulk $g-C_3N_4$. Photocatalytic activities of porous $g-C_3N_4$ materials also depended on the precursors of bulk $g-C_3N_4$, following the order of apparent rate constants (kapp): dicyandiamide < melamine < urea < thiourea. The improvement of adsorption ability in porous $g-C_3N_4$ are responsible for the high photocatalytic activity of porous $g-C_3N_4$. Moreover, the existence of sulfur in thiourea caused the different interaction in the preparation, resulting in a high activity.