Production of high calorific synthetic natural gas using cobalt supported-catalysts

<u>김태영</u>, 조성빈, 이철호, 채호진, 강석환¹, 김준우², 이종민³, 이수출, 김재창[†] 경북대학교; ¹고등기술연구원; ²포항산업과학연구원; ³씨이에스

Synthetic natural gas (SNG) from coal gasification is an environmentally friendly energy source. However, its heating value is lower than the standard heating value for power generation (especially in South Korea and Japan). This problem could be solved by adding C_2-C_4 hydrocarbons through Fischer-Tropsch reaction. In this study, Catalytic performance and characterization were investigated to elucidate effect of metal support interaction between cobalt and support (Al₂O₃ and SiO₂). The TPR profile of the Co/SiO2 showed the lower reduction temperature than that of the Co/Al2O3. The XRD peaks of Co/SiO₂ showed Co metal peak from Co3O4 after reduction at 400 °C, while Co/Al₂O₃ did not indicate Co metal peak but CoO peak. The Co/SiO₂ exhibited higher CO conversion compared to Co/Al₂O₃ under H₂/CO = 3.1, 10 bar and 300 °C, because of better reducibility of cobalt in Co/SiO₂. In addition, its heating value is similar to that of noble metal catalyst in previous literature. Therefore, Co/SiO₂ could be the promising catalyst for the production of high calorific SNG.